Abstract-This paper focuses on semistability and finite-time stability analysis and synthesis of systems having a continuum of equilibria. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial conditions. In this paper, we merge the theories of semistability and finite-time stability to develop a rigorous framework for finite-time semistability. In particular, finite-time semistability for a continuum of equilibria of continuous autonomous systems is established. Continuity of the settling-time function as well as Lyapunov and converse Lyapunov theorems for semistability are also developed. In addition, necessary and sufficient conditions for finite-time semistability of homogeneous systems are addressed by exploiting the fact that a homogeneous system is finite-time semistable if and only if it is semistable and has a negative degree of homogeneity. Unlike previous work on homogeneous systems, our results involve homogeneity with respect to semistable dynamics, and require us to adopt a geometric description of homogeneity. Finally, we use these results to develop a general framework for designing semistable protocols in dynamical networks for achieving coordination tasks in finite time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.