A comparative study of the magnetic properties and magnetic structures of the natrochalcite, NaFe(2)(D(3)O(2))(MoO(4))(2) (FeD) to those of the isostructural NaCo(2)(D(3)O(2))(MoO(4))(2) (CoD) and NaNi(2)(D(3)O(2))(MoO(4))(2) (NiD) is presented. The structural change is a shrinking of the unit cell in the order of the ionic radii of the transition metal, FeD> CoD > NiD. While NiD and CoD are canted-antiferromagnets with T(N) = 28 and 21 K, respectively, FeD is an anisotropic 2D-Ising antiferromagnet (T(N) = 17 K) with a spin-flop field of 14 kOe at 2 K and the presence of a hysteresis loop reaching only (1)/(4) of the saturation magnetization in 70 kOe. The critical field decreases almost linearly on warming to T(N). The neutron diffraction patterns of FeD below T(N) display numerous magnetic Bragg peaks which cannot be assigned to any one magnetic structure but fits well to two superposed sets, one with a temperature independent line width and has a propagation vector k(1) = (0, 0, 0) while for the other there is a clear dependence and k(2) = (0, 0, ½). In the k(1) = (0, 0, 0) magnetic structure the moments are parallel to each other within one chain and lie along the a-axis but are antiparallel to those in neighboring chains. In contrast CoD and NiD, for which k = (0, 0, 0), have their moments aligned along the b-axis and ac-plane, respectively. The second magnetic structure, k(2) = (0, 0, ½), is characterized by four sublattices, two per layer, where the moments are in the ab-plane and canted with a resultant along the a-axis which is compensated by those of the adjacent layers. For the k(2) = (0, 0, ½) structure, the scattering coherent length decreases, and the moments tend progressively toward the a-axis upon increasing temperature. The coexistence of two concomitant magnetic structures is unprecedented for compounds containing transition metal moment carriers.
We report the syntheses, crystal structures, and magnetic properties of KMn(2)(H(3)O(2))(MoO(4))(2) (MnH), KMn(2)(D(3)O(2))(MoO(4))(2) (MnD), KFe(2)(H(3)O(2))(MoO(4))(2) (FeH), KFe(2)(D(3)O(2))(MoO(4))(2) (FeD), KCo(2)(H(3)O(2))(MoO(4))(2) (CoH), and KCo(2)(D(3)O(2))(MoO(4))(2) (CoD), and the magnetic structures of MnD and FeD. They belong to the structural variant (space group I2/m) of the mineral natrochalcite NaCu(2)(H(3)O(2))(SO(4))(2) (space group C2/m) where the diagonal within the ac-plane of the latter become one axis of the former. The structure of MnD, obtained from Rietveld refinement of a high-resolution neutron pattern taken at 300 K, consists of chains of edge-sharing octahedra bridged by MoO(4) and D(3)O(2) to form layers, which are connected to K through the oxygen atoms to form the three-dimensional (3D)-network. The X-ray powder diffraction patterns of the other two compounds were found to belong to the same space group with similar parameters. The magnetic susceptibilities of MnH and FeH exhibit long-range ordering of the moments at a Néel temperature of 8 and 11 K, respectively, which are accompanied by additional strong Bragg reflections in the neutron diffraction in the ordered state, consistent with antiferromagnetism. Analyses of the neutron data for MnD and FeD reveal the presence of both long- and short-range orderings and commensurate magnetic structures with a propagation vector of (½, 0, ½). The moments are antiferromagnetically ordered within the chains with alternation between chains to generate four nonequivalent nuclear unit cells. For MnD the moments are perpendicular to the chain axis (b-axis) while for FeD they are parallel to the b-axis. The overall total is a fully compensated magnetic structure with zero moment in each case. Surprisingly, for KCo(2)(D(3)O(2))(MoO(4))(2) neither additional peaks nor increase of the nuclear peaks' intensities were observed in the neutron diffraction patterns below the magnetic anomaly at 12 K which was identified to originate from a small quantity of a ferromagnetic compound, Co(2)(OH)(2)MoO(4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.