The plastic deformation behaviour of single crystals of Pt 3 Al with the L1 2 structure having an off-stoichiometric composition of Pt-27at.%Al has been investigated in compression from 77 to 1073 K. The L1 2 structure is not stable below around 220 K, transforming into either D0c or D0c' structure. Slip occurs along <110> both on (001) and on (111) with slip on (001) being the primary slip system, which operates for most crystal orientations except for near [001], accompanied by a considerably lower CRSS (critical resolved shear stress).The CRSS tends to decrease gradually with increasing temperature for both slip in the temperature range where the L1 2 phase is stable, except for a moderate increase in CRSS observed above 673 K for slip on (001). Dislocations with b = [101] dissociate into two collinear superpartials with b = 1/2[101] separated by an APB on the corresponding slip plane for both slip on (001) and (111). For slip on (111), dislocations tend to align along their screw orientation at room temperature, suggesting the high Peierls stress for their motion. The possibility of showing the normal (large negative) temperature dependence of CRSS at low temperatures as well as the reason for the absence of the anomalous (positive) temperature dependence of CRSS for slip on (111) at high temperatures is discussed.
Abstract. The effect of elastic driving force on the microstructural change of superalloys in the secondary creep stage is evaluated by elastic energy calculations with the concept of effective eigen strain where both lattice mismatch and creep strain are taken into account The elastic energy calculations indicates that the elastic state in the secondary creep stage is totally different to that in the initial one where the lattice misfit between γ and γ' phases is over accommodated along the [100] and [010] directions by creep deformation in the γ phase. The excess creep dislocations for the over accommodation are required so as to develop an internal stress field to prevent further creep deformations. The planer raft structure with the plane normal oriented to the [001] direction is unstable in the over accommodated state. The γ/γ' lamellar interfaces will be inclined to make a wavy raft structure of which elastic energy is lower than the ideal 001 planer raft structure.
Interdiffusion coefficients of Al replacing elements in Ni-Al-X (X=Ti, V and Nb) were estimated by a series of experiments using diffusion couples of Al rich pseudo-binary systems at three different temperatures of 1423, 1473 and 1523K. In order to obtain interdiffusion coefficients of the pseudo-binary systems, the experimental data was analyzed by the Sauer and Freise method, and also impurity diffusion coefficients of Ti, V and Nb in Ni3Al were estimated by applying the Darken-Manning equation. The magnitude of interdiffusion coefficient decreased in order of V, Ti and Nb at all three temperatures. Impurity diffusion coefficients were described by the expressions: , , . The activation enthalpies obtained from the experimental data confirmed the retardation of Ti, V and Nb diffusion in Ni3Al by the anti-site diffusion mechanism. These results are consistent with our previous work on diffusion of Re and Ru in Ni3Al .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.