We comparatively examined the trunk musculature and prezygapophyseal angle of mid-trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi-aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes.
Trunk musculature in Urodela species varies by habitat. In this study, trunk musculature was examined in five species of adult salamanders representing three different habitats: aquatic species, Amphiuma tridactylum and Necturus maculosus; semi-aquatic species, Cynops pyrrhogaster; terrestrial species, Hynobius nigrescens and Ambystoma tigrinum. More terrestrial species have heavier dorsal and ventral trunk muscles than more aquatic forms. By contrast, the lateral hypaxial musculature was stronger in more aquatic species. The number of layers of lateral hypaxial musculature varied among Urodela species and did not clearly correlate with their habitats. The M. rectus abdominis was separated from the lateral hypaxial musculature in both terrestrial and semi-aquatic species. In aquatic species, M. rectus abdominis was not separated from lateral hypaxial musculature. Lateral hypaxial musculature differed in thickness among species and was relatively thinner in terrestrial species. In more terrestrial species, dorsal muscles may be used for stabilization and ventral flexing against gravity. Ventral muscle may be used in preventing dorsally concave curvature of the trunk by dorsal muscles and by weight. The lengthy trunk supported by limbs needs muscular forces along the ventral contour line in more terrestrial species. And, the locomotion on well-developed limbs seems to lead to a decrease of the lateral hypaxial musculature.
Skeletal development in salamanders is greatly influenced by their complex life history. Although the relationship between skull development and life history has been investigated in a variety of salamander species, few studies have compared skull development among lineages. Here, we describe the cranial skeletogenesis of the Japanese giant salamander, Andrias japonicus (family Cryptobranchidae), for the first time. To conduct interspecific comparisons, we also describe the cranial skeletogenesis of Hynobius nebulosus (Hynobiidae), Pleurodeles waltl (Salamandridae) and Ambystoma mexicanum (Ambystomatidae). Our comparative analyses reveal interspecific differences in cranial skeletogenesis, particularly in the timing of the onset of ossification, the direction of ossification (e.g. from anterior to posterior) and the ossification pattern of the hyobranchial skeleton. The early onset of jaw ossification, posterior extension of the maxilla and posterolateral inclination of the squamosal in An. japonicus might be adaptations that allow An. japonicus to gulp feed, primarily using the suction force generated by opening the mouth wide, while also supplementing that force by depressing the hyobranchial skeleton. Multivariate regression of skull shape on log10-transformed centroid size revealed that the unique skull shape of adult and subadult An. japonicus forms through hypermorphosis.
With the shift in their social roles, modern zoos and aquariums are required to develop scientific research. Although zoos and aquariums worldwide have reported an increase in the number of papers they publish and the diversification of their fields in recent decades, the specific circumstances in Japan are slightly unclear. We listed peer-reviewed papers authored by Japanese zoos and aquariums using search engines and quantitatively evaluated the changes in the number of papers published over 62 years. Our results showed that papers published in Japan have increased remarkably since the 1990s, and research fields have diversified as in the rest of the world. In particular, joint research with research institutes has seen an upward trend, and the instances of English-language papers have increased. Meanwhile, the content of the research was biased. In zoos, research on animal welfare has been increasing, but the focus was heavily biased toward captive mammals. Aquariums contributed to the understanding of local ecosystems through the fundamental study of wildlife, but there were fewer papers on improving husbandry. Our results indicated that while research by Japanese zoos and aquariums is developing, research on welfare, conservation, and education regarding native endangered species must still be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.