Familial Alzheimer disease mutations of presenilin 1 (PS-1) enhance the generation of A beta1-42, indicating that PS-1 is involved in amyloidogenesis. However, PS-1 transgenic mice have failed to show amyloid plaques in their brains. Because PS-1 mutations facilitate apoptotic neuronal death in vitro, we did careful quantitative studies in PS-1 transgenic mice and found that neurodegeneration was significantly accelerated in mice older than 13 months (aged mice) with familial Alzheimer disease mutant PS-1, without amyloid plaque formation. However, there were significantly more neurons containing intracellularly deposited A beta42 in aged mutant transgenic mice. Our data indicate that the pathogenic role of the PS-1 mutation is upstream of the amyloid cascade.
Beta-secretase beta-site APP cleaving enzyme 1 (BACE1), is a membrane-bound aspartyl protease necessary for the generation of amyloid beta-protein (Abeta), which accumulates in the brains of individuals with Alzheimer's disease (AD). To gain insight into the mechanisms by which BACE1 activity is regulated, we used proteomic methods to search for BACE1-interacting proteins in human neuroblastoma SH-SY5Y cells, which overexpress BACE1. We identified reticulon 4-B (RTN4-B; Nogo-B) as a BACE1-associated membrane protein. Co-immunoprecipitation experiments confirmed a physical association between BACE1 and RTN4-B, RTN4-C (the shortest isoform of RTN-4), and their homologue reticulon 3 (RTN3), both in SH-SY5Y cells and in transfected human embryonic kidney (HEK) 293 cells. Overexpression of these reticulons (RTNs) resulted in a 30-50% reduction in the secretion of both Abeta40 and Abeta42 from HEK293 cells expressing the AD-associated Swedish mutant amyloid precursor protein (APP), but did not affect Abeta secretion from cells expressing the APP beta-C-terminal fragment (beta-CTF), indicating that these RTNs can inhibit BACE1 activity. Furthermore, a BACE1 mutant lacking most of the N-terminal ectodomain also interacted with these RTNs, suggesting that the transmembrane region of BACE1 is critical for the interaction. We also observed a similar interaction between these RTNs and the BACE1 homologue BACE2. Because RTN3 and RTN4-B/C are substantially expressed in neural tissues, our findings suggest that they play important roles in the regulation of BACE1 function and Abeta production in the brain.
Amyloid- peptides (A), generated by proteolysis of the -amyloid precursor protein (APP) by -and ␥-secretases, play an important role in the pathogenesis of Alzheimer disease (AD). Inflammation is also believed to be integral to the pathogenesis of AD. Here we show that prostaglandin E 2 (PGE 2 ), a strong inducer of inflammation, stimulates the production of A in cultured human embryonic kidney (HEK) 293 or human neuroblastoma (SH-SY5Y) cells, both of which express a mutant type of APP. We have demonstrated using subtype-specific agonists that, of the four
Abeta (amyloid-beta peptides) generated by proteolysis of APP (beta-amyloid precursor protein), play an important role in the pathogenesis of AD (Alzheimer's disease). ER (endoplasmic reticulum) chaperones, such as GRP78 (glucose-regulated protein 78), make a major contribution to protein quality control in the ER. In the present study, we examined the effect of overexpression of various ER chaperones on the production of Abeta in cultured cells, which produce a mutant type of APP (APPsw). Overexpression of GRP78 or inhibition of its basal expression, decreased and increased respectively the level of Abeta40 and Abeta42 in conditioned medium. Co-expression of GRP78's co-chaperones ERdj3 or ERdj4 stimulated this inhibitory effect of GRP78. In the case of the other ER chaperones, overexpression of some (150 kDa oxygen-regulated protein and calnexin) but not others (GRP94 and calreticulin) suppressed the production of Abeta. These results indicate that certain ER chaperones are effective suppressors of Abeta production and that non-toxic inducers of ER chaperones may be therapeutically beneficial for AD treatment. GRP78 was co-immunoprecipitated with APP and overexpression of GRP78 inhibited the maturation of APP, suggesting that GRP78 binds directly to APP and inhibits its maturation, resulting in suppression of the proteolysis of APP. On the other hand, overproduction of APPsw or addition of synthetic Abeta42 caused up-regulation of the mRNA of various ER chaperones in cells. Furthermore, in the cortex and hippocampus of transgenic mice expressing APPsw, the mRNA of some ER chaperones was up-regulated in comparison with wild-type mice. We consider that this up-regulation is a cellular protective response against Abeta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.