Motivation: The identification of interactions between drugs and target proteins is a key area in genomic drug discovery. Therefore, there is a strong incentive to develop new methods capable of detecting these potential drug–target interactions efficiently.Results: In this article, we characterize four classes of drug–target interaction networks in humans involving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, and reveal significant correlations between drug structure similarity, target sequence similarity and the drug–target interaction network topology. We then develop new statistical methods to predict unknown drug–target interaction networks from chemical structure and genomic sequence information simultaneously on a large scale. The originality of the proposed method lies in the formalization of the drug–target interaction inference as a supervised learning problem for a bipartite graph, the lack of need for 3D structure information of the target proteins, and in the integration of chemical and genomic spaces into a unified space that we call ‘pharmacological space’. In the results, we demonstrate the usefulness of our proposed method for the prediction of the four classes of drug–target interaction networks. Our comprehensively predicted drug–target interaction networks enable us to suggest many potential drug–target interactions and to increase research productivity toward genomic drug discovery.Availability: Softwares are available upon request.Contact: Yoshihiro.Yamanishi@ensmp.frSupplementary information: Datasets and all prediction results are available at http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/.
Background: Phage display is widely used in basic research such as the exploration of proteinprotein interaction sites and networks, and applied research such as the development of new drugs, vaccines, and diagnostics. It has also become a promising method for epitope mapping. Research on new algorithms that assist and automate phage display based epitope mapping has attracted many groups. Most of the existing tools have not been implemented as an online service until now however, making it less convenient for the community to access, utilize, and evaluate them.
Background: Antigen epitopes provide valuable information useful for disease prevention, diagnosis, and treatment. Recently, more and more databases focusing on different types of epitopes have become available. Conformational epitopes are an important form of epitope formed by residues that are sequentially discontinuous but close together in three-dimensional space. These epitopes have implicit structural information, making them attractive for both theoretical and applied biomedical research. However, most existing databases focus on linear rather than conformational epitopes.
We evaluate the performance of six amino acid indices in B cell epitope residue prediction using the classical sliding window method on five data sets. Four of the indices: i.e. relative connectivity, clustering coefficient, closeness and betweenness are newly derived from the topological parameters of residue networks. The other two are Parker's hydrophilicity and Levitt's index, known as the best indices so far for B cell epitope prediction. On four of the data sets, the performance of all the indices was comparable and poor in general. When applied to one well-annotated data set, the performances improved and the 4 network based indices showed better performance than that of Parker's hydrophilicity and Levitt's index. When using the relative connectivity index on this data set, the prediction accuracy, sensitivity and specificity reached 73.6%, 73.0% and 75.0% respectively, with an area under the curve about 0.796. Thus, we suggested that this index is a good choice for B cell epitope prediction. It also indicates that the low performance of B cell epitope prediction is not only due to the methods and amino acid indices used, but also the data set as well. Interestingly, on the well-annotated data set, the performance of B cell epitope residue prediction is very similar to that of protein surface residue prediction, especially at the 10 and 20 Å 2 cutoffs. It is suggested that the performance in surface residue prediction might form a theoretical upper limit for the performance of B cell epitope residue prediction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.