Auditory fear conditioning, a model for fear learning, is thought to be mediated by synaptic changes in the cortical and thalamic inputs to the lateral amygdala (LA); however, the specific roles of both pathways are still debated. Here, we report that a CaMKII-␣-Cre-mediated knock-out (KO) of the rap1a and rap1b genes impaired synaptic plasticity and increased basal synaptic transmission in the cortical but not thalamic input to the LA via presynaptic changes: increases in glutamate release probability and the number of glutamate quanta released by a single action potential. Moreover, KO mice with alterations in the cortico-LA pathway had impaired fear learning, which could be rescued by training with a more aversive unconditional stimulus. These results suggest that Rap1-mediated suppression of synaptic transmission enables plasticity in the cortico-amygdala pathway, which is required for fear learning with a moderately aversive unconditional stimulus.
GABAb receptor (GABAbR)-mediated suppression of glutamate release is critical for limiting glutamatergic transmission across the central nervous system. Here we show that, upon tetanic stimulation of afferents to lateral amygdala, presynaptic GABAbR-mediated inhibition only occurs in glutamatergic inputs to principle neurons (PNs), but not to interneurons (INs), despite the presence of GABAbR in terminals to both types of neurons. The selectivity is caused by differential local GABA accumulation; it requires GABA reuptake, and parallels distinct spatial distributions of presynaptic GABAbR in terminals to PNs and INs. Moreover, GABAbR-mediated suppression of theta-burst induced long-term potentiation (LTP) occurs only in the inputs to PNs, but not to INs. Thus, target cell-specific control of glutamate release by presynaptic GABAbR orchestrates the inhibitory dominance inside amygdala and may contribute to prevention of non-adaptive defensive behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.