This study proposed a simple method to evaluate the spectral reflectance of the inner wall of a vacuum chamber. A method for calculating spectral emission coefficients by taking the spectral reflectance of the chamber inner wall into account was proposed. Furthermore, plasma diagnosis based on optical emission spectroscopic (OES) measurement was performed so as to obtain radial dependence of electron temperature Te and density Ne of a radio frequency inductively coupled Argon (Ar) plasma by applying a collisional-radiative model to radially resolved emission spectra of the Ar plasma assuming axial symmetry. In addition, Langmuir probe measurement and electromagnetic simulation were performed and compared with the OES-based plasma diagnosis results. The spectral radiance compensation improved the diagnostic result by 0.6% and 3.1% for Te and Ne, respectively.
As pool scrubbing plays an important role in fission product (FP) decontamination, a reliable model is needed. Despite the needs, mechanism of FP transfer from air-water from the swarm is not explained exactly which means that the evaluation of physical model used in pre-existing model couldn’t be done enough.
Existing model for pool scrubbing is predicted in the MELCOR code. Inside the code, a simple model of bubbly jet divided in 3 regions is used: 1) Globule region where the gas including FP enter and collapse, 2) Swarm rise region where the bubble rises up stationary after the collapse is done and, 3) Entrainment region where the bubble pop out to the atmosphere. In each region, the decontamination factor (DF), the particle density ratio before and after each region, is calculated. On these region, flow and physical force inside the gas phase is predicted to be one of the driving force which cause the FP transfer.
Therefore, our study aims at the particle behavior on the gas phase. As to understand the physical phenomenon individually, the study focuses on flow behavior and inner flow of a single rising bubble. As an approach, comparison of bubble containing aerosol and no aerosol has been done for each parameter of size, aspect ratio, velocity. Compared with existing equations, the rising speed of clean bubble condition and aspect ratio of CSI condition agreed well to the MELCOR code [1]. On the other hand, many difference were also measured in other condition.
Application of parameters obtained from experiment were done against the MELCOR model. Calculation of velocity inside the oil droplet using the experimental parameters obtained from visualization measurement was done. The local gravitational sedimentation and centrifugal velocity took a higher value in clean bubble and OX50 condition compared to CSI condition. On the other hand, Brownian diffusion velocity had an opposite trend. PIV measurement were performed by a silicone oil to visualize the inner flow clearly and compared with the calculation. Seen from the results, the local diffusion velocity took a lower value compared to the calculation using the MELCOR model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.