Seven of eight wild species produced inviable hybrids after crossing. Hybrid lethality, which was observed in all crosses at 28 degrees C, was Type II lethality, with the characteristic symptoms of browning of hypocotyl and roots; lethality was suppressed at elevated temperatures (34 or 36 degrees C). Furthermore, one or more genes on the Q chromosome of N. tabacum were absolutely responsible for hybrid lethality, suggesting that many species of section Suaveolentes share the same factor that triggers hybrid lethality by interaction with the genes on the Q chromosome. Exceptionally, only one wild species, N. fragrans, produced 100 % viable hybrids after crossing with N. tabacum, suggesting that N. fragrans has no factor triggering hybrid lethality.
Hybrid seedlings from the cross Nicotiana tabacum × N. suaveolens, obtained by test-tube pollination and ovule culture, expressed lethality at 28°C. Characteristic lethal symptoms in these hybrid seedlings consisted of browning of hypocotyls and roots. One hundred and seventeen hybrid seedlings were eventually obtained by the use of test-tube pollination and ovule culture. Hybrid seedlings maintained at 36°C did not express any lethal symptoms. Hybrid seedlings used for further experiments were transferred to 36°C immediately after germination at 28°C. When hybrid seedlings cultured at 36°C were transferred to 28°C, their growth stopped and lethal symptoms were expressed. During the progressive expression of lethality, apoptotic features such as chromatin condensation, nuclear fragmentation and DNA fragmentation were detected. On the other hand, there was no sign of apoptotic cell death in the hybrid seedlings at 36°C. Based on the observation that the same lethal symptoms and the same apoptotic features were observed in the reciprocal cross, N. suaveolens × N. tabacum, we suggest that not only the underlying causes of hybrid lethality but also the underlying causes of apoptotic cell death are due to the interaction of coexisting heterogeneous genomes, rather than to the effect of cytoplasmic genes. Furthermore, the progression of apoptotic cell death in the cross N. tabacum × N. suaveolens began in stems and roots, followed by leaves.
Hybrid seedlings from the cross Nicotiana tabacum x N. suaveolens express lethality at 28 degrees C. We carried out a cross between monosomic lines of N. tabacum lacking the Q chromosome and N. suaveolens by test-tube pollination and ovule culture at 28 degrees C. To suppress hybrid lethality, hybrid seedlings obtained were transferred to 36 degrees C immediately after germination and cultured. We determined whether Q-chromosome-specific DNA markers were detected among hybrid seedlings. When hybrid seedlings cultured at 36 degrees C were transferred to 28 degrees C, hybrid seedlings in which Q-chromosome-specific DNA markers were detected expressed hybrid lethality, while hybrid seedlings in which Q-chromosome-specific DNA markers were not detected did not express hybrid lethality. From these results, we concluded that the presence of the Q chromosome of N. tabacum is related to hybrid lethality observed in crosses between N. tabacum and N. suaveolens. This is the first report that clearly demonstrates the relationship between a certain chromosome and hybrid lethality in the genus Nicotiana using chromosome-specific DNA markers. Additionally, we confirmed that the Q chromosome belongs to the S subgenome because Q-chromosome-specific DNA markers were detected only in N. sylvestris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.