An experimental study of steady shear and elongational flow Theological properties of a series of polypropylene melts of varying molecular weight and distribution is reported. Broadening the molecular weight distribution increases the non‐Newtonian character of the shear viscosity function and increases the principal normal stress differences at fixed shear stress. The behavior is compared to earlier rheological property‐molecular weight studies. Correlations are developed for these properties in terms of molecular structure. Elongational flow studies indicate that for commercial and broader molecular weight distribution samples, ready failure by neck development occurs and the elongational viscosity appears to decrease with increasing elongation rate. For narrower molecular weight distribution samples, the elongational viscosity is an increasing function of elongation rate, The implication of these experimental results to viscoelastic fluid constitutive equations and polymer melt processing is developed.
SynopsisAn experimental study of the influence of molecular weight distribution on the melt spinning and extrudate swell of a series of polypropylenes of varying molecular weight and distribution is reported. Emphasis is given to effects of variations of molecular weight distribution. Narrowing the molecular distribution increases the slope of the elongational viscosity-elongation rate curve, stabilizes the spinline relative to both random disturbances and draw resonance, and decreases both instantaneous and delayed extrudate swell. These results are interpreted in terms of viscoelastic fluid mechanics and earlier experimental studies by the authors of the influence of molecular weight distribution on rheological properties. The influences of these rheological factors on spinline structure development is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.