Xerogels are defined as porous structures that are obtained by evaporative drying of wet gels. One challenge is producing xerogels with high porosity and large specific surface areas, which are structurally comparable to supercritical-dried aerogels. Herein, we report on cellulose xerogels with a truly aerogel-like porous structure. These xerogels have a monolithic form with porosities and specific surface areas in the ranges of 71–76% and 340–411 m 2 /g, respectively. Our strategy is based on combining three concepts: (1) the use of a very fine type of cellulose nanofibers (CNFs) with a width of ~3 nm as the skeletal component of the xerogel; (2) increasing the stiffness of wet CNF gels by reinforcing the inter-CNF interactions to sustain their dry shrinkage; and (3) solvent-exchange of wet gels with low-polarity solvents, such as hexane and pentane, to reduce the capillary force on drying. The synergistic effects of combining these approaches lead to improvements in the porous structure in the CNF xerogels.
Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or "xerogels" that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (>400 m 2 g −1 ) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06−0.07 W m −1 K −1 ), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.
Aerogels have many unique properties such as low density and low thermal conductivity, and, in particular, transparent silica aerogels are attractive for thermal insulating windows. Practical applications of silica aerogels, however, have been limited because of their low mechanical strength, and it is still challenging to synthesize transparent and mechanically strong aerogels. Here, we report colorless transparent melamine–formaldehyde (MF) aerogels prepared via a nonaqueous synthetic strategy. The obtained transparent MF aerogel with a density of 0.18 g cm–3 shows significantly higher mechanical strength and a lower thermal conductivity of ca. 13 mW m–1 K–1 compared to conventional silica aerogels with similar density.
In typical pressurized water reactor (PWR) plant, in case that one steam generator (SG) is dried out and cannot be credited for the primary cooldown, at least one reactor coolant pump (RCP) has to be operated in order to homogenize the primary coolant temperature distribution among loops when the plant is cooled down to the cold shutdown state. For example, an accident such as steam line break (SLB) and feedwater line break (FLB) leads to this situation. If the natural circulation condition is established due to unavailability of all the RCPs, the natural circulation in the primary loop connected to the affected SG would be interrupted in the plant cooldown phase. In this situation, the continuous cooldown disturbs the smooth depressurization because it leads to void generation at the top of the affected SG tube where the high temperature coolant is left. In addition, there is a possibility that all RCPs cannot be operated in case of the earthquake or the fire if the RCPs are not earthquake-proof and fire-resistant. Therefore the establishment of the cooldown procedure without RCPs operation under the temperature unbalanced condition among the primary loops can contribute to the safety enhancement for typical PWR plants. The several experiments have been already performed to observe the natural circulation phenomena under the temperature unbalanced condition. It has been reported that the plant can be continuously cooled down with smooth depressurization by stepwise cooling manner using MSRVs of the intact SGs. In this study, Mitsubishi Heavy Industries, Ltd. (MHI) performed the transient analyses to simulate the natural circulation cooldown test under the temperature unbalanced condition among loops performed by Large Scale Test Facility (JAEA ROSA/LSTF) using M-RELAP5, which was a modified plant system transient code by MHI based on RELAP5-3D. Based on the analysis results, the thermal hydraulic phenomena of natural circulation cooldown under the temperature unbalanced condition were investigated. As a result, the mechanism of natural circulation interruption was clarified, and this paper shows the outline of the cooldown procedure under the temperature unbalanced condition which could be applied to the PWR plants.
Cellulose nanofibers (CNFs) have excellent properties, such as high strength, high specific surface areas (SSA), and low coefficients of thermal expansion (CTE), making them a promising candidate for bio-based reinforcing fillers of polymers. A challenge in the field of CNF-reinforced composite research is to produce strong and transparent CNF/polymer composites that are sufficiently thick for use as load-bearing structural materials. In this study, we successfully prepared millimeter-thick, transparent CNF/polymer composites using CNF xerogels, with high porosity (~70%) and high SSA (~350 m2 g−1), as a template for monomer impregnation. A methacrylate was used as the monomer and was cured by UV irradiation after impregnation into the CNF xerogels. The CNF xerogels effectively reinforced the methacrylate polymer matrix, resulting in an improvement in the flexural modulus (up to 546%) and a reduction in the CTE value (up to 78%) while maintaining the optical transparency of the matrix polymer. Interestingly, the composites exhibited flame retardancy at high CNF loading. These unique features highlight the applicability of CNF xerogels as a reinforcing template for producing multifunctional and load-bearing polymer composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.