The IFCC Working Group for Standardization of Thyroid Function Tests proposes a candidate international conventional reference procedure (RMP) for measurement of the amount-of-substance concentration of free thyroxine in plasma/serum at physiological pH 7.40 and temperature (37.0°C). The unit for reporting measurement results is, by convention, pmol/L. The RMP is based on equilibrium dialysis isotope dilution-liquid chromatography/tandem mass spectrometry (ED-ID-LC/tandem MS). The rationale for proposing a conventional RMP is that, because of the physical separation step, it is unknown whether the measurement truly reflects the concentration of free thyroxine (FT4) in serum. Therefore, the ED part of the RMP has to strictly adhere to the following conditions: use of a dialysis buffer with a biochemical composition resembling the ionic environment of serum/plasma as closely as possible; buffering of the sample to a pH of 7.40 (at 37.0°C) before dialysis, however, without additional dilution; dialysis in a device with a dialysand/dialysate compartment of identical volume and separated by a membrane of regenerated cellulose and adequate cut-off; thermostatic control of the temperature during dialysis at 37.0°C±0.50°C. The convention does not apply to the ID-LC/tandem MS part, provided it is eligible to be nominated for review by the Joint Committee for Traceability in Laboratory Medicine. Here, we describe the ED procedure, inclusive its validation and transferability, in greater detail. We recommend a protocol for successful calibration, measurement and monitoring of the accuracy/trueness and precision of the candidate conventional RMP. For details on our ID-LC/tandem MS procedures, we refer to the Supplement.
Background: Glycated albumin is an intermediate glycaemic control marker for which there are several measurement procedures with entirely different reference intervals. We have developed a reference measurement procedure for the purpose of standardizing glycated albumin measurements. Methods: The isotope dilution liquid chromatography/tandem mass spectrometry method was developed as a reference measurement procedure for glycated albumin. The stable isotopes of lysine and fructosyl-lysine, which serve as an internal standard, were added to albumin isolated from serum, followed by hydrogenation. After hydrolysis of albumin with hot hydrochloric acid, the liberated lysine and fructosyl-lysine were measured by liquid chromatography/tandem mass spectrometry, and their concentrations were determined from each isotope ratio. The reference materials (JCCRM611) for determining of glycated albumin were prepared from pooled patient blood samples. Results: The isotope dilution-tandem mass spectrometry calibration curve of fructosyl-lysine and lysine showed good linearity (r ¼ 0.999). The inter-assay and intra-assay coefficient of variation values of glycated albumin measurement were 1.2 and 1.4%, respectively. The glycated albumin values of serum in patients with diabetes assessed through the use of this method showed a good relationship with routine measurement procedures (r ¼ 0.997). The relationship of glycated albumin values of the reference material (JCCRM611) between these two methods was the same as the relationship with the patient serum samples. Conclusion: The Committee on Diabetes Mellitus Indices of the Japan Society of Clinical Chemistry recommends the isotope dilution liquid chromatography/tandem mass spectrometry method as a reference measurement procedure, and JCCRM611 as a certified reference material for glycated albumin measurement. In addition, we recommend the traceability system for glycated albumin measurement.
It is generally recognized that the fundamental role ol calcium in many physiological processes is exerted mainly by the free, unbound calcium ions, the so-called ionized calcium (iCa2*). Before the development of calcium ion-selective electrodes (ISEs), no practical method for measuring iCa2* in plasma existed; various methods for measuring the concentration of diffusible calcium (1) in plasma require equilibrium conditions and are time-consuming (2). The development of calcium ISEs (3) has made it possible to assay serum iCa2*' rapidly and directly (4).Calcium ISEs have become widely used and, as reported by Bowers, Brassard, and Sena (5), iCa2* constituted 88% of all clinical calcium measurement requests compared with 11% for total calcium and 1% for urine calcium at Hartford
Certified reference materials (CRMs) enable the meaningful comparison of measurement results over time and place. When CRMs are used to calibrate or verify the performance of a measurement system, results produced by that system can be related through the CRM to well-defined, stable, and globally accessible reference(s). Properly done, this directly establishes the metrological traceability of the results. However, achieving the meaningful comparison of results from measurement systems calibrated and/or verified with different CRMs requires that the different materials truly deliver the same measurand, that is, are "the same" within stated uncertainty except for differences in the level of the analyte of interest. We here detail experimental and data analysis techniques for establishing and demonstrating the comparability of materials. We focus on (1) establishing a uniform interpretation of the common forms of CRM uncertainty statements, (2) estimating consistent measurement system response uncertainties from sometimes inconsistent experimental designs, (3) using "errors-in-variables" analysis methods to evaluate comparability studies and novel graphical tools for communicating results of the evaluation to reviewing authorities and potential CRM customers, and (4) augmenting established comparability studies with new materials using measurements provided by the certifying institution. These experimental and data analytic tools were developed in support of the Joint Committee for Traceability in Laboratory Medicine's efforts to enhance the reliability of clinical laboratory measurements and are illustrated with potassium and cholesterol measurands of clinical relevance; however, these tools can be applied to any group of materials that deliver the same nominal measurand with stated value and uncertainty.
Although further studies are required, the DODG method may be likely applicable as one candidate reference method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.