A nearly complete pinniped skeleton from the middle Miocene Okoppezawa Formation (ca 16.3–13.9 Ma), Hokkaido, northern Japan, is described as the holotype of Allodesmus uraiporensis sp. nov. The new species is distinguishable from other species of the genus by having the palatine fissure (incisive foramen) that is located anterior to the canine, an anteriorly located supraorbital process of the frontal, and by having the calcaneum with a developed peroneal tubercle. Our phylogenetic analysis suggests that the subfamily Allodesminae are represented by two genera, Atopotarus and Allodesmus, and the latter genus is represented by at least six species; Al. kernensis, Al. sinanoensis, Al. naorai, Al. packardi, Al. demerei and Al. uraiporensis sp. nov. Allodesmus uraiporensis sp. nov. is one of the oldest and the northernmost record of the genus in the western North Pacific, and it suggests that the diversification of the genus in the western North Pacific was synchronous to the time of their diversification in the eastern North Pacific.
Sea turtles use olfaction to detect volatile and water‐soluble substances. The nasal cavity of green turtles (Chelonia mydas) comprises morphologically defined the anterodorsal, anteroventral, and posterodorsal diverticula, as well as a single posteroventral fossa. Here, we detailed the histological features of the nasal cavity of a mature female green turtle. The posterodorsal diverticulum contained spongy‐like venous sinuses and a wave‐shaped sensory epithelium that favored ventilation. Secretory structures that were significant in sensory and non‐sensory epithelia were probably involved in protection against seawater. These findings suggested that green turtles efficiently intake airborne substances and dissolve water‐soluble substances in mucous, while suppressing the effects of salts. In addition, positive staining of Gαs/olf that couples with olfactory, but not vomeronasal, receptors was predominant in all three types of sensory epithelium in the nasal cavity. Both of airborne and water‐soluble odorants seemed to be detected in cells expressing Gαolf and olfactory receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.