Why groups of individuals sometimes exhibit collective 'wisdom' and other times maladaptive 'herding' is an enduring conundrum. Here we show that this apparent conflict is regulated by the social learning strategies deployed. We examined the patterns of human social learning through an interactive online experiment with 699 participants, varying both task uncertainty and group size, then used hierarchical Bayesian model-ftting to identify the individual learning strategies exhibited by participants. Challenging tasks elicit greater conformity amongst individuals, with rates of copying increasing with group size, leading to high probabilities of herding amongst large groups confronted with uncertainty. Conversely, the reduced social learning of small groups, and the greater probability that social information would be accurate for less-challenging tasks, generated 'wisdom of the crowd' effects in other circumstances. Our model-based approach provides evidence that the likelihood of collective intelligence versus herding can be predicted, resolving a longstanding puzzle in the literature.
Laughter is a nonverbal vocal expression that often communicates positive affect and cooperative intent in humans. Temporally coincident laughter occurring within groups is a potentially rich cue of affiliation to overhearers. We examined listeners’ judgments of affiliation based on brief, decontextualized instances of colaughter between either established friends or recently acquainted strangers. In a sample of 966 participants from 24 societies, people reliably distinguished friends from strangers with an accuracy of 53–67%. Acoustic analyses of the individual laughter segments revealed that, across cultures, listeners’ judgments were consistently predicted by voicing dynamics, suggesting perceptual sensitivity to emotionally triggered spontaneous production. Colaughter affords rapid and accurate appraisals of affiliation that transcend cultural and linguistic boundaries, and may constitute a universal means of signaling cooperative relationships.
The exploration-exploitation dilemma is a recurrent adaptive problem for humans as well as non-human animals. Given a fixed time/energy budget, every individual faces a fundamental trade-off between exploring for better resources and exploiting known resources to optimize overall performance under uncertainty. Colonies of eusocial insects are known to solve this dilemma successfully via evolved coordination mechanisms that function at the collective level. For humans and other non-eusocial species, however, this dilemma operates within individuals as well as between individuals, because group members may be motivated to take excessive advantage of others' exploratory findings through social learning. Thus, even though social learning can reduce collective exploration costs, the emergence of disproportionate “information scroungers” may severely undermine its potential benefits. We investigated experimentally whether social learning opportunities might improve the performance of human participants working on a “multi-armed bandit” problem in groups, where they could learn about each other's past choice behaviors. Results showed that, even though information scroungers emerged frequently in groups, social learning opportunities reduced total group exploration time while increasing harvesting from better options, and consequentially improved collective performance. Surprisingly, enriching social information by allowing participants to observe others' evaluations of chosen options (e.g., Amazon's 5-star rating system) in addition to choice-frequency information had a detrimental impact on performance compared to the simpler situation with only the choice-frequency information. These results indicate that humans groups can handle the fundamental “dual exploration-exploitation dilemmas” successfully, and that social learning about simple choice-frequencies can help produce collective intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.