Bimetallic nanostructure of noble metals is an alternative material that can provide the tenability of plasmonic performance. In this study, the plasmonic silver–titanium nanoisland (Ag–Ti NI) films deposited on a silicon wafer and glass slide substrates were prepared by magnetron co-sputtering of high-purity Ag target (99.99%) operated at 100 W-DC source, and Ti target (99.99%) operated at 50–250 W-DC pulsed source. The surface morphologies of the prepared films revealed a noncontinuous island Ag–Ti according to the formation of thin film growth based on the Volmer–Weber model. An increase in the sputtering power of the Ti target caused an evident increase in the Ag–Ti NIs diameter. The localized surface plasmon resonance (LSPR) was evaluated by UV–Vis–NIR spectrophotometry. The LSPR peak shift disappears with an increase of the sputtering power of the Ti target.In addition, the results confirmed that the surface-enhanced Raman scattering (SERS) activity of the bimetallic Ag–Ti NIs significantly improved in performance and stability, which is promising for the application in analytical chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.