Otoacoustic emissions (OAEs) are useful for studying medial olivocochlear (MOC) efferents, but several unresolved methodological issues cloud the interpretation of the data they produce. Most efferent assays use a ''probe stimulus'' to produce an OAE and an ''elicitor stimulus'' to evoke efferent activity and thereby change the OAE. However, little attention has been given to whether the probe stimulus itself elicits efferent activity. In addition, most studies use only contralateral (re the probe) elicitors and do not include measurements to rule out middle-ear muscle (MEM) contractions. Here we describe methods to deal with these problems and present a new efferent assay based on stimulus frequency OAEs (SFOAEs) that incorporates these methods. By using a postelicitor window, we make measurements in individual subjects of efferent effects from contralateral, ipsilateral, and bilateral elicitors. Using our SFOAE assay, we demonstrate that commonly used probe sounds (clicks, tone pips, and tone pairs) elicit efferent activity, by themselves. Thus, results of efferent assays using these probe stimuli can be confounded by unwanted efferent activation. In contrast, the single 40 dB SPL tone used as the probe sound for SFOAEbased measurements evoked little or no efferent activity. Since they evoke efferent activation, clicks, tone pips, and tone pairs can be used in an adaptation efferent assay, but such paradigms are limited in measurement scope compared to paradigms that separate probe and elicitor stimuli. Finally, we describe tests to distinguish middle-ear muscle (MEM) effects from MOC effects for a number of OAE assays and show results from SFOAE-based tests. The SFOAE assay used in this study provides a sensitive, flexible, frequency-specific assay of medial efferent activation that uses a low-level probe sound that elicits little or no efferent activity, and thus provides results that can be interpreted without the confound of unintended efferent activation.
Animal studies have led to the view that the acoustic medial olivocochlear (MOC) efferent reflex provides sharply tuned frequency-specific feedback that inhibits cochlear amplification. To determine if MOC activation is indeed narrow band, we measured the MOC effects in humans elicited by 60-dB sound pressure level (SPL) contralateral, ipsilateral, and bilateral noise bands as a function of noise bandwidth from 1/2 to 6.7 octaves. MOC effects were quantified by the change in stimulus frequency otoacoustic emissions from 40 dB SPL probe tones near 0.5, 1, and 4 kHz. In a second experiment, the noise bands were centered 2 octaves below probe frequencies near 1 and 4 kHz. In all cases, the MOC effects increased as elicitor bandwidth increased, with the effect saturating at about 4 octaves. Generally, the MOC effects increased as the probe frequency decreased, opposite expectations based on MOC innervation density in the cochlea. Bilateral-elicitor effects were always the largest. The ratio of ipsilateral/contralateral effects depended on elicitor bandwidth; the ratio was large for narrow-band probe-centered elicitors and approximately unity for wide-band elicitors. In another experiment, the MOC effects from increasing elicitor bandwidths were calculated from measurements of the MOC effects from adjacent half-octave noise bands. The predicted bandwidth function agreed well with the measured bandwidth function for contralateral elicitors, but overestimated it for ipsilateral and bilateral elicitors. Overall, the results indicate that (1) the MOC reflexes integrate excitation from almost the entire cochlear length, (2) as elicitor bandwidth is increased, the excitation from newly stimulated cochlear regions more than overcomes the reduced excitation at frequencies in the center of the elicitor band, and (3) contralateral, ipsilateral, and bilateral elicitors show MOC reflex spatial summation over most of the cochlea, but ipsilateral spatial summation is less additive than contralateral.
The high sensitivity and frequency selectivity of the mammalian cochlea is due to amplification produced by outer hair cells (OHCs) and controlled by medial olivocochlear (MOC) efferents. Data from animals led to the view that MOC fibers provide frequency-specific inhibitory feedback; however, these studies did not measure intact MOC reflexes. To test whether MOC inhibition is primarily at the frequency that elicits the MOC activity, acoustically elicited MOC effects were quantified in humans by the change in otoacoustic emissions produced by 60-dB SPL tone and half-octave-band noise elicitors at different frequencies relative to a 40-dB SPL, 1-kHz probe tone. On average, all elicitors produced MOC effects that were skewed (elicitor frequencies -1 octave below the probe produced larger effects than those -1 octave above). The largest MOC effects were from elicitors below the probe frequency for contra- and bilateral elicitors but were from elicitors centered at the probe frequency for ipsilateral elicitors. Typically, ipsilateral elicitors produced larger effects than contralateral elicitors and bilateral elicitors produced effects near the ipsi+contra sum. Elicitors at levels down to 30-dB SPL produced similar patterns. Tuning curves (TCs) interpolated from these data were V-shaped with Q10s approximately 2. These are sharper than MOC-fiber TCs found near 1 kHz in cats and guinea pigs. Because cochlear amplification is skewed (more below the best frequency of a cochlear region), these data are consistent with an anti-masking role of MOC efferents that reduces masking by reducing the cochlear amplification seen at 1 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.