Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides found throughout the cell that lack protein-coding function. Their functions are closely linked to their interaction with RNA-binding proteins (RBPs) and nucleic acids. Nuclear lncRNAs have been studied extensively, revealing complexes with structural and regulatory roles that enable gene organization and control transcription. Cytoplasmic lncRNAs are less well understood, but accumulating evidence indicates that they also form complexes with diverse structural and regulatory functions. Here, we review our current knowledge of cytoplasmic lncRNAs and the different levels of gene regulation controlled by cytoplasmic lncRNA complexes, including mRNA turnover, translation, protein stability, sponging of cytosolic factors, and modulation of signaling pathways. We conclude by discussing areas of future study needed to elucidate comprehensively the biology of lncRNAs, to further understand the impact of lncRNAs on physiology and design lncRNA-centered therapeutic strategies. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Cellular senescence, triggered by sublethal damage, is characterized by indefinite growth arrest, altered gene expression patterns, and a senescence-associated secretory phenotype. While the accumulation of senescent cells during aging decreases tissue function and promotes many age-related diseases, at present there is no universal marker to detect senescent cells in tissues. Cyclin-dependent kinase inhibitors 2A (p16/CDKN2A) and 1A (p21/CDKN1A) can identify senescent cells, but few studies have examined the numbers of cells expressing these markers in different organs as a function of age. Here, we investigated systematically p16-and p21-positive cells in tissue arrays designed to include normal organs from persons across a broad spectrum of ages. Increased numbers of p21-positive and p16-positive cells with donor age were found in skin (epidermis), pancreas, and kidney, while p16-expressing cells increased in brain cortex, liver, spleen and intestine (colon), and p21-expressing cells increased in skin (dermis). The numbers of cells expressing p16 or p21 in lung did not change with age, and muscle did not appear to have p21-or p16positive cells. In summary, different organs display different levels of the senescent proteins p16 and p21 as a function of age across the human life span.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.