The development of an area must be accompanied by an ever-increasing population growth which will also increase the waste produced. Waste production will put pressure on the environment if it is not managed properly which will eventually end up in water bodies. The increased pollution load is also caused by the habit of people disposing of domestic waste, both liquid waste and solid waste directly into the water. Batujai Reservoir is one of the vital objects for the survival of the people of Central Lombok in particular, and the people of Lombok Island in general. Because of its vital role, the Batujai Reservoir needs to be saved so that the reservoir ecosystem can carry out its functions and benefits in improving the welfare of the people of Central Lombok. There are several community activities that are a source of direct reservoir water pollution (point source) such as fishing activities using floating net cages and disposal of domestic waste by the community which is directly channeled to water bodies. Pollutants collected in the Batujai Reservoir will reduce the water quality of the Batujai Reservoir. This research aims to analyze the water quality of the Batujai Reservoir which is caused by business activities and the community based on Government Regulation Number 82 of 2001 and to determine the water pollution index of the Batujai Reservoir. This study uses a quantitative approach by collecting primary data from direct observations in the field and secondary data based on previous research reports and government reports. The results showed that the average physical parameters were above the water quality standard threshold for class II water quality, the average chemical parameters were above the water quality standard for class III and class IV water quality, while the biological parameters were above the threshold. Water quality limits for class II and class III. The decline in water quality in the Batujai Reservoir is caused by various wastes entering the Batujai Reservoir water bodies. The analysis result with storet system shows that the water quality of Batujai Reservoir is in bad condition or heavily polluted.
In order to maintain the environmental carrying capacity of coastal tourism, this research was conducted to determine the condition of river water environmental pollution in the Petitenget beach area and pollutant source activities. Determination of water quality is carried out by analyzing the water quality taken at several sampling points in the four rivers that lead to the Petitenget beach. Determined the pollution index value (IP) of the physical chemical and biological pollution parameters. The results showed that the four rivers that flow into the Petitenget Beach area had been contaminated with indications of pH, BOD, COD, ammonia, Coliform and E. coli which exceeded water quality category III class quality (PerGub Bali No 16 Year 2016). The four rivers are included in the criteria of severe contamination. The four rivers have experienced physical damage or structural changes that have very high discharge fluctuations both in quantity and quality. Slimy basic structure, smelly and slum aesthetic waters. While the indication of the impact of pollution is waste water which is directly discharged into the river from hotels, restaurants, homestays, commercial centers and settlements.
Sulfate reducing bacteria (SRB) was successfully isolated from Estuary Dam in Suwung Denpasar,Indonesia. This estuary catches highly polluted water from Badung River which runs across and hence carries pollution due to waste disposal from Denpasar City. SRB was studied in detail for their ability to reduce sulfate to sulfide with organic material as an oxidizing agent. SRB exploration of the estuary ecosystem of the contaminated dam was accomplished through isolation, selection and characterization of the isolates obtained. The result of this study found superior SRB named DPS 1711, DPS 1705 and DPS 1703. The bacteria have the ability to grow at pH 3, room temperature and uses compost as organic substrate. This ability is an important factor for the application of isolates in the treatment of acid mine waste. Isolates have optimum optical density under the pH range of 4 to 7 and the best at pH 5 have a growth rate profile at a temperature range of 25 to 40°C. The isolates observed were Gram-negative stem, motile bacteria which only grow in anaerobic condition. Physiological-biochemical characterization showed the three isolates, namely DPS 1703, DPS 1705 and DPS 1711 were SRB groups identified as Desulfotomaculum orientis.
The biodegradatio nof Rhodamine B may not be directly result in CO2 and H2O, rather other pollutans such asphenol, ammonia, and chloride ions. The objective of this research are to determine the effectivity of thebiosys templants indegradating Rhodamine B and the capability to reducethe contents of phenol, ammonia, chloride ionsand COD.Concentration artificial waste Rhodamine B that used in this research are 1 mg/L. Seeding sediment using microorganism selected from dyeingwaste disposallocated in the village Pemogan, South Denpasar than disseminated into a bath biosystem in which hadgiven thesand, pebbles and Ipomeacarssicaulis. Furthermore artificial waste Rhodamine B poured into the biosystem and waste waterwere analyzed with the time rangeevery 6 hours from 0 until 48 hours.The results of the capability treatment system showed that the biosystems of plants was capable to reduce optimals levels of Phenol from 24 to 30 hours of processing amounted to 0.2906 mg / L, Ammonia from 24 to 36 hours of processing amounted to 0.1452 mg / L, Ion Klorida and COD from 18 to 30 hours of processing amounted to 2.127 mg / L and 3.848 mg / L. Biosystems plant is effective to lowering levels of phenol and ammonia (above 50%), but less effective in lowering levels of Chloride Ion and COD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.