In mammalian cells three closely related cavin proteins cooperate with the scaffolding protein caveolin to form membrane invaginations known as caveolae. Here we have developed a novel single-molecule fluorescence approach to directly observe interactions and stoichiometries in protein complexes from cell extracts and from in vitro synthesized components. We show that up to 50 cavins associate on a caveola. However, rather than forming a single coat complex containing the three cavin family members, single-molecule analysis reveals an exquisite specificity of interactions between cavin1, cavin2 and cavin3. Changes in membrane tension can flatten the caveolae, causing the release of the cavin coat and its disassembly into separate cavin1-cavin2 and cavin1-cavin3 subcomplexes. Each of these subcomplexes contain 9 ± 2 cavin molecules and appear to be the building blocks of the caveolar coat. High resolution immunoelectron microscopy suggests a remarkable nanoscale organization of these separate subcomplexes, forming individual striations on the surface of caveolae.DOI: http://dx.doi.org/10.7554/eLife.01434.001
Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.
Allosteric protein switches are key controllers of information and energy processing in living organisms and are desirable engineered control tools in synthetic systems. Here we present a generally applicable strategy for construction of allosteric signaling systems with inputs and outputs of choice. We demonstrate conversion of constitutively active enzymes into peptide-operated synthetic allosteric ON switches by insertion of a calmodulin domain into rationally selected sites. Switches based on EGFP, glucose dehydrogenase, NanoLuciferase, and dehydrofolate reductase required minimal optimization and demonstrated a dynamic response ranging from 1.8-fold in the former case to over 200-fold in the latter case. The peptidic nature of the calmodulin ligand enables incorporation of such synthetic switch modules into higher order sensory architectures. Here, a ligand-mediated increase in proximity of the allosteric switch and the engineered activator peptide modulates biosensor’s activity. Created biosensors were used to measure concentrations of clinically relevant drugs and biomarkers in plasma, saliva, and urine with accuracy comparable to that of the currently used clinical diagnostic assays. The approach presented is generalizable as it allows rapid construction of efficient protein switches that convert binding of a broad range of analytes into a biochemical activity of choice enabling construction of artificial signaling and metabolic circuits of potentially unlimited complexity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.