The success of gene therapy depends on the specificity of transgene delivery by therapeutic vectors. The present study describes the use of an adenovirus (Ad) fiber replacement strategy for genetic targeting of the virus to human CD40, which is expressed by a variety of diseased tissues. The tropism of the virus was modified by the incorporation into its capsid of a protein chimera comprising structural domains of three different proteins: the Ad serotype 5 fiber, phage T4 fibritin, and the human CD40 ligand (CD40L). The tumor necrosis factor-like domain of CD40L retains its functional tertiary structure upon incorporation into this chimera and allows the virus to use CD40 as a surrogate receptor for cell entry. The ability of the modified Ad vector to infect CD40-positive dendritic cells and tumor cells with a high efficiency makes this virus a prototype of choice for the derivation of therapeutic vectors for the genetic immunization and targeted destruction of tumors.
Background The immune response has been implicated in the control of uveal melanoma progression. Epigenetic mechanisms mediated by specific microRNAs (miRs) regulate immune responses. Methods Blood was drawn from six patients with uveal melanoma followed from diagnosis, at which time there was no clinical or radiographic evidence of metastasis, until metastasis manifested. Circulating T cell, natural killer (NK), natural killer T (NKT), and myeloid suppressor cell populations were assessed by flow cytometry. CD3+, CD15+, and CD56+ cells were isolated using immunomagnetic beads. Plasma and cellular levels of immune regulatory miRs were determined by quantitative polymerase chain reaction assays. Results The development of metastasis was associated with decreases in circulating CD3−CD56dim NK cells and CD8+ and double-negative CD3+CD56+ NKT cells. ICOS+CD4+FoxP3+ T regulatory cells and CD11b+CD14−CD15+ myeloid suppressor cells increased. Plasma levels of miR-20a, 125b, 146a, 155, 181a, and 223 were higher in the study patients at diagnosis compared to controls. Plasma levels of miR-20a, 125b, 146a, 155, and 223 increased, and miR-181a decreased when metastasis manifested. Alterations in immune regulatory miRs were also observed in CD3+, CD15+, and CD56+ cell populations. Conclusions The development of metastasis in uveal melanoma is associated with changes in immune effector and regulatory cells consistent with lessening tumor immune surveillance. These changes are associated with changes in plasma and cellular levels of immune regulatory miRs. The results may help guide uveal melanoma immunotherapy and biomarker development.
Apoptosis genes, such as TP53 and p16/CDKN2A, that mediate responses to cytotoxic chemotherapy, are frequently non-functional in melanoma. Differentiation may be an alternative to apoptosis for inducing melanoma cell cycle exit. Epigenetic mechanisms regulate differentiation, and DNA methylation alterations are associated with the abnormal differentiation of melanoma cells. The effects of the deoxycytidine analogue decitabine (5-aza-2’-deoxycytidine), which depletes DNA methyl transferase 1 (DNMT1), on melanoma differentiation were examined. Treatment of human and murine melanoma cells in vitro with concentrations of decitabine that did not cause apoptosis inhibited proliferation accompanied by cellular differentiation. A decrease in promoter methylation, and increase in expression of the melanocyte late-differentiation driver SOX9, were followed by increases in cyclin dependent kinase inhibitors (CDKN) p27/CDKN1B and p21/CDKN1A that mediate cell cycle exit with differentiation. Effects were independent of the TP53, p16/CDKN2A, and also the BRAF status of the melanoma cells. Resistance, when observed, was pharmacologic, characterized by diminished ability of decitabine to deplete DNMT1. Treatment of murine melanoma models in vivo with intermittent, low-dose decitabine, administered sub-cutaneously to limit high peak drug levels that cause cytotoxicity and increase exposure time for DNMT1 depletion, and with tetrahydrouridine to decrease decitabine metabolism and further increase exposure time, inhibited tumor growth and increased molecular and tumor stromal factors implicated in melanocyte differentiation. Modification of decitabine dose, schedule and formulation for differentiation rather than cytotoxic objectives inhibits the growth of melanoma cells in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.