The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuousand batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of pH, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported.
The feasibility of removing algae from water and wastewater by chemical flocculation techniques was investigated. Mixed cultures of algae were obtained from both continuous- and batch-fed laboratory reactors. Representative cationic, anionic, and nonionic synthetic organic polyelectrolytes were used as flocculants. Under the experimental conditions, chemically induced algal flocculation occurred with the addition of cationic polyelectrolyte, but not with anionic or nonionic polymers, although attachment of all polyelectrolyte species to the algal surface is shown. The mechanism of chemically induced algal flocculation is interpreted in terms of bridging phenomena between the discrete algal cells and the linearly extended polymer chains, forming a three-dimensional matrix that is capable of subsiding under quiescent conditions. The degree of flocculation is shown to be a direct function of the extent of polymer coverage of the active sites on the algal surface, although to induce flocculation by this method requires that the algal surface charge must concurrently be reduced to a level at which the extended polymers can bridge the minimal distance of separation imposed by electrostatic repulsion. The influence of p H, algal concentration, and algal growth phase on the requisite cationic flocculant dose is also reported.
SummaryThe mixing of the anaerobic digester contents significantly influences the efficiency of this operation; in particular, hydraulic dead zones are extremely detrimental to the reaction kinetics involved in anaerobic digestion. An analysis of the relative importance of thermal fluid movement in the digester to those caused by fluid inflow and outflow is presented. As an example, these principles are applied to a digester a t the South Bend Wastewater Treatment Plant. Experimental measurements, which have general applicability for the measurement of digester mixing volume, confirm the theoretical conjectures. Various types of optimizations can be attempted on this mixing operation. One such optimization applied to gas lift mixers, as employed in the South Bend Treatment Plant, is illustrated.
/ Three approaches to using aerial photography are evaluated for searching for open dumps in the state of Indiana. Photography with hand-held cameras from a small airplane proved more effective and flexible than either photo-interpretation of existing air photos or subcontracting to a federal agency for new aerial photography. The rationale for our choice of aerial reconnaissance, other uses of low-level aerial surveillance, the utility of small-format camera aerial photography for environmental analysis, and methods used for locating open dumps are discussed.Background for the Study
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.