The aim of this study was to determine the response of photosynthetic carbon metabolism in spinach and bean to low temperature. (a) Exposure of warm-grown spinach and bean plants to 10°C for 10 days resulted in increases in the total activities of a number of enzymes, including ribulose 1,5-bisphosphate carboxylase (Rubisco), stromal fructose 1,6 bisphosphatase (Fru 1,6-P2ase), sedoheptulose 1,7-bisphosphatase (Sed 1,7-P2ase), and the cytosolic Fru 1,6-P2ase. In spinach, but not bean, there was an increase in the total activity of sucrose-phosphate synthase. (b) The C02-saturated rates of photosynthesis for the coldacclimated spinach plants were 68% greater at 100C than those for warm-acclimated plants, whereas in bean, rates of photosynthesis at 10°C were very low after exposure to low temperature. (c) When spinach leaf discs were transferred from 27 to 100C, the stromal Fru 1,6-P2ase and NADP-malate dehydrogenase were almost fully activated within 8 minutes, and Rubisco reached 90% of full activation within 15 minutes of transfer. An initial restriction of Calvin cycle fluxes was evident as an increase in the amounts of ribulose 1,5-bisphosphate, glycerate-3-phosphate, Fru 1,6-P2, and Sed 1,7-P2. In bean, activation of stromal Fru 1,6-P2ase was weak, whereas the activation state of Rubisco decreased during the first few minutes after transfer to low temperature. However, NADP-malate dehydrogenase became almost fully activated, showing that no loss of the capacity for reductive activation occurred. (d) Temperature compensation in spinach evidently involves increases in the capacities of a range of enzymes, achieved in the short term by an increase in activation state, whereas long-term acclimation is achieved by an increase in the maximum activities of enzymes. The inability of bean to activate fully certain Calvin cycle enzymes and sucrose-phosphate synthase, or to increase nonphotochemical quenching of chlorophyll fluorescence at 100C, may be factors contributing to its poor performance at low temperature. complete in evergreen woody species that are subject to large seasonal variations in temperature, such as Eucalyptus species and the desert evergreen, Nerium oleander. For such plants acclimated to low temperature, temperature response curves for photosynthesis indicate an increased photosynthetic capacity over a wide range of temperatures (2, 7). The increases in photosynthetic capacity that result from acclimation to a lower growth temperature could be the result of a number of factors, as plants acclimating to low temperature show increases in, for example, soluble protein, the rate of electron transport, and in the activities of enzymes such as Rubisco and the stromal Fru 1,6-P2ase,2 which parallel the increase in photosynthetic capacity (2, 3).There are a number of other reports of increases in Rubisco at lower temperatures, for example, in the arctic-alpine species Oxyria digyna (5), in the C4 plant Atriplex lentiformis (24), and in the grass Dactylis glomerata (30). Gas-exchange studies also...
A catalytic mechanism can be proposed involving the conserved triad. Helix alpha6 must shift its position to permit substrate binding to BKR and might act as a flexible lid on the active site. The similarities in fold, mechanism and substrate binding between BKR, which catalyzes a carbon-oxygen double-bond reduction, and ENR, the carbon-carbon double-bond oxidoreductase in FAS, suggest a close evolutionary link during the development of the fatty acid biosynthetic pathway.
Food is one of the most traded goods, and the conflict in Ukraine, one of the European breadbaskets, has triggered a significant additional disruption in the global food supply chains after the COVID-19 impact. The disruption to food output, supply chains, availability, and affordability could have a long-standing impact. As a result, the availability and supply of a wide range of food raw materials and finished food products are under threat, and global markets have seen recent increases in food prices. Furthermore, the Russian-Ukrainian conflict has adversely affected food supply chains, with significant effects on production, sourcing, manufacturing, processing, logistics, and significant shifts in demand between nations reliant on imports from Ukraine. This paper aims to analyze the impacts of the conflict between Russia and Ukraine on the effectiveness and responsiveness of the global food supply chains. A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) approach, including grey literature, was deployed to investigate six key areas of the food supply chains that would be impacted most due to the ongoing war. Findings include solutions and strategies to mitigate supply chain impacts such as alternative food raw materials, suppliers and supply chain partners supported by technological innovations to ensure food safety and quality in warlike situations.
The rise of food security up international political, societal and academic agendas has led to increasing interest in novel means of improving primary food production and reducing waste. There are however, also many 'post-farm gate' activities that are critical to food security, including processing, packaging, distributing, retailing, cooking and consuming. These activities all affect a range of important food security elements, notably availability, affordability and other aspects of access, nutrition and safety. Addressing the challenge of universal food security, in the context of a number of other policy goals (e.g. social, economic and environmental sustainability), is of keen interest to a range of UK stakeholders but requires an up-to-date evidence base and continuous innovation. An exercise was therefore conducted, under the auspices of the UK Global Food Security Programme, to identify priority research questions with a focus on the UK food system (though the outcomes may be broadly applicable to other developed nations). Emphasis was placed on incorporating a wide range of perspectives ('world views') from different stakeholder groups: policy, private sector, nongovernmental organisations, advocacy groups and academia. A total of 456 individuals submitted 820 questions from which 100 were selected by a process of online voting and a three-stage workshop voting exercise. These 100 final questions were sorted into 10 themes and the 'top' question for each theme identified by a further voting exercise. This step also allowed four different stakeholder groups to select the top 7-8 questions from their perspectives. Results of these voting exercises are presented. It is clear from the wide range of questions prioritised in this exercise that the different stakeholder groups identified specific research needs on a range of post-farm gate activities and food security outcomes. Evidence needs related to food affordability, nutrition and food safety (all key elements of food security) featured highly in the exercise. While there were some questions relating to climate impacts on production, other important topics for food security (e.g. trade, transport, preference and cultural needs) were not viewed as strongly by the participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.