Water, in the liquid or vapor phase, injected at various locations into the gas turbine cycle has frequently been employed to improve engine performance. One such way to improve engine performance is by steam injection, of varied quantity, into the combustor section of the engine. Combustor steam injection increases turbine mass flow rate without increasing airflow rate and consequently increasing the specific power (power/lbm of air). Another approach, receiving widespread acceptance in recent years, is to inject water droplets into the inlet duct upstream of the engine compressor inlet. As the droplets evaporate, prior to entering the compressor, the inlet air is cooled subsequently decreasing compressor power and thus increasing engine power output. The present paper examines the concept of injecting water droplets, termed fogging, in excess of the amount that can be evaporated before entering the engine compressor. This excess water, termed over-spray, is carried directly into the engine compressor. The computer simulated performance of a simple cycle gas turbine engine using evaporative cooling upstream of the compressor with over-spray is reported. The paper describes an improved simulation model developed to predict compressor performance as water is evaporated while passing through the stages of an axial flow compressor. The effects are similar to those of an intercooled compressor without the complications of additional piping, heat exchangers, and the requirement for a dual spool compressor. The results of a parametric study of the effects of evaporative cooling on engine operating characteristics are presented. These results include compressor performance characteristics modified for various inlet conditions (temperature, pressure, and humidity) and fogging conditions (flow rate, over-spray, and water temperature) as well as estimates of the reduced compression work and lowered compressor discharge temperatures. These modified compressor performance characteristics are used in the engine simulation to predict how an over-sprayed engine would perform under various operating conditions. Estimates of increased output power and increased specific power are presented.
This paper describes a jet engine simulation project assigned to mechanical engineering students in a senior level course in aircraft propulsion systems. The project introduces the students to the methods of engine system analysis and design based on computer simulation. The project statement provides the students with the design point operating characteristics such as engine inlet conditions, pressure ratios, and static thrust developed, which are necessary to develop a design point thermodynamic model. After topics in cycle analysis and engine component performance are introduced the students can develop the system of equations necessary to model the engine system and use this model to predict the off-design performance (speed, thrust, efficiency, etc.) of the engine. Off-design conditions resulting from changes in throttle setting, aircraft speed, altitude, and environmental conditions are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.