Substantial data support major roles for bone-derived TGF- 1 and tumor-derived parathyroid hormone-related protein (PTHrP) in the vicious cycle of local bone destruction that characterizes osteolytic metastases. Tumor-produced PTHrP stimulates osteoclastic bone resorption to result in the bone destruction associated with breast cancer metastases (1, 2). Neutralizing antibodies to PTHrP not only decreased osteoclastic bone resorption but also inhibited the development of metastases to bone by the human breast cancer cell line, MDA-MB-231 (3). TGF-, stored in bone matrix (4) and released locally in active form during osteoclastic resorption (5), stimulates PTHrP production by tumor cells (6 -8). A dominantnegative TGF- type II receptor (TRII⌬cyt) stably expressed in the MDA-MB-231 breast cancer line rendered the cells unresponsive to TGF- and inhibited TGF--induced PTHrP secretion and the development of bone metastases in a mouse model. This dominant-negative type II blockade was reversed by a constitutively active TGF- type I receptor (TRI(T204D)). Furthermore, transfection of the cDNA for PTHrP into the dominant-negative MDA-MB-231 line also increased PTHrP production and accelerated bone metastases (9). These published data establish that TGF- in bone can promote osteolysis by increasing PTHrP secretion from breast cancer cells. They do not, however, exclude contributions from other TGF--responsive tumor factors. Here we demonstrate that PTHrP is the central mediator of TGF--induced osteolytic metastasis. We also show that TGF- increases PTHrP secretion from MDA-MB-231 cells by signaling through both Smad and p38 MAP kinase pathways.
Corticosteroid-binding globulin (CBG, transcortin) is the primary cortisol binding protein. It is a non-inhibitory serine protease inhibitor, capable of conformational change from a high cortisol-binding affinity form to a low affinity form upon cleavage of its reactive centre loop by various proteases, such as neutrophil elastase. The burgeoning inflammatory role of CBG applies to acute, severe inflammation where depletion is associated with mortality, and to chronic inflammation where defects in cortisol delivery may perpetuate inflammation. Naturally occurring human mutations influence a wide range of CBG properties and point toward a role in hitherto unexplained chronic musculoskeletal pain and fatigue disorders as well as potentially affecting fertility outcomes including offspring gender. In vitro and knock-out animal models of CBG propose a role for CBG in cortisol transport to the brain, providing a foundation for understanding the human observations in those with CBG mutations and sex differences in stress-related mood and behaviour. Finally, CBG measurement has a practical role in the estimation of free cortisol, useful in clinical circumstances where CBG levels or cortisol binding affinity is reduced. Taken together, novel data suggest a role for cortisol in targeted cortisol delivery, with implications in acute and chronic inflammation, as well as roles in metabolism and neurocognitive function, implying that CBG is a multifaceted component in the mechanisms of hypothalamic-pituitary-adrenal axis related homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.