Water quality agencies and scientists are increasingly adopting standardized sampling methodologies because of the challenges associated with interpreting data derived from dissimilar protocols. Here, we compare 13 protocols for monitoring streams from different regions and countries around the globe. Despite the spatially diverse range of countries assessed, many aspects of bioassessment structure and protocols were similar, thereby providing evidence of key characteristics that might be incorporated in a global sampling methodology. Similarities were found regarding sampler type, mesh size, sampling period, subsampling methods, and taxonomic resolution. Consistent field and laboratory methods are essential for merging data sets collected by multiple institutions to enable large-scale comparisons. We discuss the similarities and differences among protocols and present current trends and future recommendations for monitoring programs, especially for regions where large-scale protocols do not yet exist. We summarize the current state in one of these regions, Latin America, and comment on the possible development path for these techniques in this region. We conclude that several aspects of stream biomonitoring need additional performance evaluation (accuracy, precision, discriminatory power, relative costs), particularly when comparing targeted habitat (only the commonest habitat type) versus site-wide sampling (multiple habitat types), appropriate levels of sampling and processing effort, and standardized indicators to resolve dissimilarities among biomonitoring methods. Global issues such as climate change are creating an environment where there is an increasing need to have universally consistent data collection, processing and storage to enable large-scale trend analysis. Biomonitoring programs following standardized methods could aid international data sharing and interpretation.
Summary Fencing remnant native vegetation has become a widespread activity for arresting declines in biodiversity in agricultural landscapes. However, few data are available on the effectiveness of this approach. The present study investigated the short‐term effects of fencing to exclude livestock on dominant tree and shrub recruitment, plant species cover, litter and soil characteristics in remnant grassy woodlands in southern NSW. Vegetation and soil surveys were undertaken at 47 sites fenced by Greening Australia (NSW) for 2–4 years. Fenced and unfenced areas at each site were compared using split‐plot sampling. Woodlands sampled were dominated by Yellow Box/Blakely’s Red Gum (Eucalyptus melliodora/Eucalyptus blakelyi), Grey Box (Eucalyptus microcarpa) or White Cypress‐pine (Callitris glaucophylla). Significantly higher numbers of tree recruits were found in the fenced sites, with tree recruitment found in 59% of fenced sites compared with 13% of unfenced sites. Fenced sites also had significantly greater cover of native perennial grasses, less cover of exotic annual species and less soil surface compaction. However, outcomes varied among woodland ecosystems and individual sites. Where tree recruitment occurred, there was significantly more tree recruitment where there was greater perennial grass cover and less regeneration where exotic annual grass cover or overstorey crown cover was dense. Few shrubs recruited in fenced or unfenced areas, reflecting the lack of mature shrubs in most sites. Fencing is an important first step for conserving threatened grassy woodlands, but more active management may be needed to enhance woodland recovery, particularly in sites where few or no recruits were found. Key words bush regeneration, fencing, grazing exclusion, rehabilitation, woodland restoration.
Seamounts have often been viewed as specialized habitats that support unique communities; this notion has given rise to several hypotheses about how seamount ecosystems are structured. One, the ‘seamount oasis hypothesis’, predicts that invertebrates are more abundant, speciose and attain higher standing stocks on seamounts compared to other deep‐sea habitats. Because this hypothesis has remained untested for biomass, we ask two questions: (i) Do seamounts support a higher benthic biomass than nearby slopes at corresponding depths? (ii) If they do, which particular taxa and trophic groups drive observed difference in biomass? Analysis of more than 5000 sea‐floor images reveals that the mean biomass of epibenthic megafauna on 20 southwest Pacific seamounts was nearly four times greater than on the adjacent continental slope at comparable depths. This difference is largely attributable to the scleractinian coral Solenosmilia variabilis, whose mean biomass was 29 times higher on seamounts. In terms of trophic guilds, filter‐feeders and filter‐feeders/predators made up a significantly greater proportion of biomass on seamounts, whereas deposit feeders and those with mixed feeding modes dominated at slope habitats. Notwithstanding support for the seamount oasis hypothesis provided by this study, the hypothesis needs to be critically tested for seamounts in less productive regions, for seamounts with a greater proportion of soft substratum, and in other parts of the oceans where scleractinian corals are not prevalent. In this context, testing of seamount paradigms should be embedded in a broader ecological context that includes other margin habitats (e.g. canyons) and community metrics (e.g. diversity and body size).
Freshwater rivers have been substantially altered by development and flow regulation. Altered hydrological regimes have affected a range of biota, but impacts are often most obvious on freshwater fish. Flow largely influences the range of physical habitat available to fish at various life history stages. Biological rhythms are therefore often linked to flow and optimized so that opportunities for spawning, growth and dispersal are synchronized. Assuming that flow therefore becomes the main factor which structures freshwater fish communities, the use of species specific biological information should be able to inform adaptive flow delivery strategies from the river reach to catchment scale. A test of this assertion was performed as a case study of native fish within the Edward‐Wakool River system (New South Wales, Australia). Fish within the system were assigned to one of four groups based on biological similarity. Aspects of reproductive and movement ecology were then reviewed to generate optimal flow release strategies for each group. Life expectancy and hydrological constraints were then investigated and used to develop a possible 10‐year flow delivery program that could generate ecological outcomes within a strategic adaptive management framework that considered potential impacts on third parties. The approach could be used to develop flow characteristics to benefit biota in any watercourse provided enough data are available to link potential outcomes with flow delivery.
Acacia s. str. (Mimosoideae, Fabaceae) is the largest plant genus in Australia (~1000 species). Its seeds have physical dormancy from a hard, water-impermeable testa. Heat from fire (natural systems) and hot water (nursery production) can break this dormancy. It is often reported that these treatments ‘soften’ or ‘crack’ the seed coat, but in practice they only affect a minute part of the seed coat, the lens. We examined lens structure in a wide range of Acacia species to determine what diversity of testa and lens structure was present, if there were differing responses to a hot water dormancy breaking treatment and if there were structural differences between soft- and hard-seeded species. Seed morphology, testa and lens structure were examined before and after hot water treatment (~90°C for one minute), in 51 species of Australian Acacia from all seven sections, from all states and territories of Australia and from a wide range of environments. Five of the species had been noted to produce non-dormant seed (‘soft-seeded’ species). Average seed mass per species ranged from 3.1 to 257.9 mg (overall average 24.2 mg, median 13.8 mg). Almost all species had a relatively thick seed coat (average 132.2 µm) with well-developed palisade cells (average 41.5 µm long) and a lens which ‘popped’ in response to hot water treatment. For 44 species ranging in average seed mass from 3.1 to 43.9 mg (×14 range), the unpopped lens area only ranged ×3 (11480–36040 µm2). The lens was small (in 88% of species the average length of the unpopped lens was <300 µm) and the unpopped lens area was a minute proportion of seed surface area (average 0.10%). A. harpophylla (soft-seeded species) had a thin testa (37.3 µm) without obvious palisade cells and did not have a functional lens. In hard-seeded species the morphology of the popped lens varied widely, from a simple mound to complete detachment. A functional lens is not a universal feature in all genera of the Mimosoideae, including several species in a genus (Senegalia) previously included in Acacia s. lat. On the basis of the 51 investigated species a lens was present in all Australian acacias, although non-functional in two soft-seeded species. Although the lens was, on average, only ~1/1000th of the surface area of an Acacia seed and thus easily overlooked, it can have a profound influence on imbibition and germination. An assessment of lens structure, before and after heat treatment, can be of considerable use when interpreting the results of Acacia germination experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.