A series of novel N-(4-pyridinyl)-1H-indol-1-amines and other heteroaryl analogs was synthesized and evaluated in tests to determine potential utility for the treatment of Alzheimer's disease. From these compounds, N-propyl-N-(4-pyridinyl)-1H-indol-1-amine (besipirdine, 4c) was selected for clinical development based on in-depth biological evaluation. In addition to cholinomimetic properties based initially on in vitro inhibition of [3H]quinuclidinyl benzilate binding, in vivo reversal of scopolamine-induced behavioral deficits, and subsequently on other results, 4c also displayed enhancement of adrenergic mechanisms as evidenced in vitro by inhibition of [3H] clonidine binding and synaptosomal biogenic amine uptake, and in vivo by reversal of tetrabenazine-induced ptosis. The synthesis, structure-activity relationships for this series, and the biological profile of 4c are reported.
A novel series of substituted (pyrroloamino)pyridines was synthesized, and the compounds were evaluated for cholinomimetic-like properties in vitro (inhibition of [3H]quinuclidinyl benzilate binding) and in vivo (reversal of scopolamine-induced dementia) as potential agents for the treatment of Alzheimer's disease. Compounds displaying significant activity were more broadly evaluated, which revealed the presence of a desirable adrenergic component of activity. The synthesis and structure-activity relationships for this series is presented, along with the biological profiles of selected compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.