General anesthetics have marked effects on synaptic transmission, but the mechanisms of their presynaptic actions are unclear. We used quantitative laser-scanning fluorescence microscopy to analyze the effects of the volatile anesthetic isoflurane on synaptic vesicle cycling in cultured neonatal rat hippocampal neurons monitored using either transfection of a pH-sensitive form of green fluorescent protein fused to the luminal domain of VAMP (vesicle-associated membrane protein), (synapto-pHluorin) or vesicle loading with the fluorescent dye FM 1-43. Isoflurane reversibly inhibited action potentialevoked exocytosis over a range of concentrations, with little effect on vesicle pool size. In contrast, exocytosis evoked by depolarization in response to an elevated extracellular concentration of KCl, which is insensitive to the selective Na ϩ channel blocker tetrodotoxin, was relatively insensitive to isoflurane.Inhibition of exocytosis by isoflurane was resistant to bicuculline, indicating that this presynaptic effect is not caused by the well known GABA A receptor modulation by volatile anesthetics. Depression of exocytosis was mimicked by a reduction in stimulus frequency, suggesting a reduction in action potential initiation, conduction, or coupling to Ca 2ϩ channel activation. There was no evidence for a direct effect on endocytosis. The effects of isoflurane on synaptic transmission are thus caused primarily by inhibition of action potential-evoked synaptic vesicle exocytosis at a site upstream of Ca 2ϩ entry and exocytosis, possibly as a result of Na ϩ channel blockade and/or K ϩ channel activation, with the possibility of lesser contributions from Ca 2ϩ channel blockade and/or soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated vesicle fusion.
The A1555G mutation in the 12S rRNA gene of human mitochondrial DNA causes maternally inherited, nonsyndromic deafness, an extreme case of tissue-specific mitochondrial pathology. A transgenic mouse strain that robustly overexpresses the mitochondrial 12S ribosomal RNA methyltransferase TFB1M (Tg-mtTFB1 mice) exhibits progressive hearing loss that we proposed models aspects of A1555G-related pathology in humans. Although our previous studies of Tg-mtTFB1 mice implicated apoptosis in the spiral ganglion and stria vascularis because of mitochondrial reactive oxygen species-mediated activation of AMP kinase (AMPK) and the nuclear transcription factor E2F1, detailed auditory pathology was not delineated. Herein, we show that Tg-mtTFB1 mice have reduced endocochlear potential, indicative of significant stria vascularis dysfunction, but without obvious signs of strial atrophy. We also observed decreased auditory brainstem response peak 1 amplitude and prolonged wave I latency, consistent with apoptosis of spiral ganglion neurons. Although no major loss of hair cells was observed, there was a mild impairment of voltage-dependent electromotility of outer hair cells. On the basis of these results, we propose that these events conspire to produce the progressive hearing loss phenotype in Tg-mtTFB1 mice. Finally, genetically reducing AMPK α1 rescues hearing loss in Tg-mtTFB1 mice, confirming that aberrant up-regulation of AMPK signaling promotes the observed auditory pathology. The relevance of these findings to human A1555G patients and the potential therapeutic value of reducing AMPK activity are discussed.
Sinonasal glomangiopericytoma is a rare sinonasal tumour accounting for less than. 5% of all sinonasal tumours. This tumour often presents as another, more common type of vascular lesion and is similarly prone to haemorrhage. The optimal treatment includes complete surgical resection. We, herein, present two such cases adding to the world literature of this rare tumour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.