Control of Theileria equi, the primary cause of equine theileriosis, is largely reliant on acaracide use and chemosterilization with imidocarb dipropionate (ID). However, it is currently unknown if ID is effective against Theileria haneyi, the recently identified second causative agent of equine theileriosis, or if the drug maintains effectiveness against T. equi in the presence of T. haneyi co-infection. The purpose of this study was to address these questions using ID treatment of the following three groups of horses: (1) five T. haneyi infected horses; (2) three T. haneyi-T. equi infected horses; and (3) three T. equi-T. haneyi infected horses. Clearance was first evaluated using nPCR for each Theileria sp. on peripheral blood samples. ID failed to clear T. haneyi in all three groups of horses, and failed to clear T. equi in two of three horses in group two. For definitive confirmation of infection status, horses in groups two and three underwent splenectomy post-treatment. The T. equi-nPCR-positive horses in group two developed severe clinical signs and were euthanized. Remaining horses exhibited moderate signs consistent with T. haneyi. Our results demonstrate that ID therapy lacks efficacy against T. haneyi, and T. haneyi-T. equi co-infection may interfere with ID clearance of T. equi.
Equine piroplasmosis (EP) is an infectious, tick-borne disease caused by the hemoprotozoan parasites, Theileria equi, Babesia caballi, and a recently reported new species, T. haneyi. Infections by these apicomplexan parasites limit performance and cause economic losses for the horse industry. Equine piroplasmosis is widespread in the northern regions of Nigeria, where an increasing portion of the animal population is composed of horses. This disease has remained epidemiologically challenging, especially as the movement of horses increases across Nigeria. In this study, blood samples from 300 horses were collected in three states of northwestern Nigeria. The presence of piroplasms was screened by nested PCR targeting 18S rDNA and positive samples were analyzed using species-specific-nested PCR-targeting genes including ema1 (T. equi), rap1 (B. caballi), and a gene coding a protein of unknown function (T. haneyi). Species-specific-nPCR results demonstrated that the prevalence of T. equi was 13.0% (39/300), B. caballi was 3.3% (10/300) and T. haneyi was 2.7% (8/300). Mixed infections with T. equi and B. caballi was 2.7% (8/300) while T. equi, B. caballi, and T. haneyi multiple infection prevalence was 0.6% (2/300). We used 18S rDNA sequences to determine close relationships between T. equi by phylogenetic analysis and demonstrated that among 57 sequences of Theileria parasites, 28 samples belonged to clade A (49%), 13 samples were found to be clade C (22%), and 16 were clade D (28%). These results demonstrate the genetic diversity of T. equi circulating in horses from Nigeria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.