HIV infection remains a global and public health issue with the incidence increasing in some countries. Despite the fact that combination antiretroviral therapy (cART) has decreased mortality and increased the life expectancy of HIV-infected individuals, non-AIDS conditions, mainly those associated with a persistent inflammatory state, have emerged as important causes of morbidity, and mortality despite effective antiviral therapy. One of the most common comorbidities in HIV-1 patients is Vitamin D (VitD) insufficiency, as VitD is a hormone that, in addition to its physiological role in mineral metabolism, has pleiotropic effects on immune regulation. Several reports have shown that VitD levels decrease during HIV disease progression and correlate with decreased survival rates, highlighting the importance of VitD supplementation during infection. An extensive review of 29 clinical studies of VitD supplementation in HIV-infected patients showed that regardless of cART, when VitD levels were increased to normal ranges, there was a decrease in inflammation, markers associated with bone turnover, and the risk of secondary hyperparathyroidism while the anti-bacterial response was increased. Additionally, in 3 of 7 studies, VitD supplementation led to an increase in CD4+ T cell count, although its effect on viral load was inconclusive since most patients were on cART. Similarly, previous evidence from our laboratory has shown that VitD can reduce the infection of CD4+ T cells in vitro. The effect of VitD supplementation on other HIV-associated conditions, such as cardiovascular diseases, dyslipidemia or hypertension, warrants further exploration. Currently, the available evidence suggests that there is a potential role for VitD supplementation in people living with HIV-1, however, comprehensive studies are required to define an adequate supplementation protocol for these individuals.
VitD reduces HIV-1 infection in T cells possibly by inducing antiviral gene expression, reducing the viral co-receptor CCR5 and, at least at the highest cholecalciferol concentration, by promoting an HIV-1-restrictive CD38HLA-DR immunophenotype.
Vitamin D (VitD) is an endogenous immunomodulator that could protect from HIV-1 infection reducing immune activation and inducing the expression of anti-HIV-1 peptides. To establish a correlation between VitD and natural resistance to HIV-1 infection, a case-control study using blood and mucosa samples of 58 HIV-1-exposed but seronegative (HESN) individuals, 43 HIV-1 seropositives (SPs) and 59 non-exposed healthy controls (HCs) was carried out. The VitD concentration in plasma was determined by ELISA, and mRNA relative units (RU) of VDR, IL-10, TGF-β, TNF-α and IL-1β in peripheral blood mononuclear cells (PBMCs), oral and genital mucosa was quantified by qRT-PCR. mRNA levels of human beta-defensin (HBD) -2 and -3 were previously reported and used for correlations. Significantly higher levels of VitD were found in plasma as well as higher mRNA RU of VDR in PBMCs, and in genital mucosa from HESN compared to HCs. In addition, higher mRNA RU of TNF-α, IL-1β and IL-10, and lower mRNA RU of TGF-β were found in PBMC from HESNs compared to HCs. We also observed higher IL-10 mRNA RU in genital mucosa of HESNs compared to HCs, and the mRNA levels of TNF-α in oral and genital mucosa of SPs were higher compared to HESNs. Furthermore, positive correlations between VDR and IL-10 mRNA RU in PBMCs and genital mucosa of HESNs were found. Finally, HBD-2 and HBD-3 mRNA RU were positively correlated with VDR mRNA expression in oral mucosa from HESNs. These results suggest that high levels of VitD and its receptor are associated with natural resistance to HIV-1 infection. Up-regulation of the anti-inflammatory IL-10, and the induction of anti-HIV-1 defensins in mucosa might be part of the mechanisms involved in this association. However, further studies are required to define causal associations.
The main genetic factor related to HIV-1 resistance is the CCR5-D32 mutation; however, the homozygous genotype is uncommon. The CCR5-D32 mutation along with single nucleotide polymorphisms (SNPs) in the CCR5 promoter and the CCR2-V64I mutation have been included in seven human haplogroups (HH) previously associated with resistance/susceptibility to HIV-1 infection and different rates of AIDS progression. Here, we determined the association of the CCR5 promoter SNPs, the CCR5-D32 mutation, CCR2-V64I SNP, and HH frequencies with resistance/susceptibility to HIV-1 infection in a cohort of HIV-1-serodiscordant couples from Colombia. Seventy HIV-1-exposed, but seronegative (HESN) individuals, 57 seropositives (SP), and 112 healthy controls (HC) were included. The CCR5-D32 mutation and CCR2-V64I SNP were identified by PCR, and the CCR5 promoter SNPs were evaluated by sequencing. None of the individuals exhibited a homozygous D32 genotype; the CCR2-I allele was more frequent in HESN (34%) than HC (23%) ( p = 0.039, OR = 1.672). The frequency of the 29G allele was higher in SP than HC ( p = 0.003, OR = 3). HHF2 showed a higher frequency in HC (19%) than SP (9%) ( p = 0.027), while HHG1 was more frequent in SP (11.1%) than in HC (4.2%) ( p = 0.019). The AGACCAC-CCR2-I-CCR5 wild-type haplotype showed a higher frequency in SP (14.2%) than in HC (3.7%) ( p = 0.001). In conclusion, the CCR5-D32 allele is not responsible for HIV-1 resistance in this HESN group; however, the CCR2-I allele could be protective, while the 29G allele might increase the likelihood of acquiring HIV-1 infection. HHG1 and the AGACCAC-CCR2-I-CCR5 wild-type haplotype might promote HIV-1 infection while HHF2 might be related to resistance. However, additional studies are required to evaluate the implications of these findings.
In the context of HIV sexual transmission at the genital mucosa, initial interactions between the virus and the mucosal immunity determine the outcome of the exposure. Hence, these interactions have been deeply explored in attempts to undercover potential targets for developing preventative strategies. The knowledge gained has led to propose a hypothetical model for mucosal HIV transmission. Subsequent research studies on this topic further revealed new mechanisms and identified new host-HIV interactions. This review aims at integrating these findings to inform better and update the current model of HIV transmission. At the earliest stage of virus exposure, the epithelial integrity and the presence of antiviral factors are critical in preventing viral entry to the submucosa. However, the virus has been shown to enter to the submucosa in the presence of physical abrasion or via epithelial transmigration using paracellular passage or transcytosis mechanisms. The efficiency of these processes is greater with cell-associated viral inoculums and can be influenced by the presence of viral and immune factors, and by the structure of the exposed epithelium. Once the virus reaches the submucosa, dendritic cells and fibroblasts, as recently described, have been shown in vitro of being capable of facilitating the transfer of viral particles to susceptible cells, leading to viral dissemination, most likely in a trans-infection manner. The presence of activated CD4+ T cells in submucosa increases the probability of infection, where the predominant microbiota could be implicated through the modulation of an inflammatory microenvironment. Other factors such as genital fluids and hormones could also play an essential role in HIV transmission. Here, we review the most recent evidence described for mucosal HIV-transmission contributing with the understanding of this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.