PAK4 is a metazoan-specific kinase acting downstream of Cdc42. Here we describe the structure of human PAK4 in complex with Inka1, a potent endogenous kinase inhibitor. Using single mammalian cells containing crystals 50 μm in length, we have determined the in cellulo crystal structure at 2.95 Å resolution, which reveals the details of how the PAK4 catalytic domain binds cellular ATP and the Inka1 inhibitor. The crystal lattice consists only of PAK4–PAK4 contacts, which form a hexagonal array with channels of 80 Å in diameter that run the length of the crystal. The crystal accommodates a variety of other proteins when fused to the kinase inhibitor. Inka1–GFP was used to monitor the process crystal formation in living cells. Similar derivatives of Inka1 will allow us to study the effects of PAK4 inhibition in cells and model organisms, to allow better validation of therapeutic agents targeting PAK4.
Context:Recent studies of corticosteroid-binding globulin (CBG) indicate that it does not merely transport cortisol passively but also actively regulates its release in the circulation. We show how CBG binding affinity can vary to give changes in free cortisol concentration in a physiologically relevant range.Objective:The objective was to determine how the binding affinity of plasma CBG is affected by glycosylation, changes in body temperature, and the conformational change induced by proteases at sites of inflammation.Design:Binding assays were performed over a range of temperatures with plasma and recombinant CBG to determine the contribution of glycosylation. The role of conformational change was assessed by measuring binding affinities of plasma CBG before and after reactive loop cleavage by neutrophil elastase.Main Outcome Measures:Determination of binding constants allows calculation of clinically relevant changes in CBG saturation and free cortisol concentrations.Results:On reactive loop cleavage at inflammation sites, CBG can continue to act as a buffered source of cortisol, although with a much reduced affinity, to give a potential quadrupling of free cortisol. Predicted increases in systemic free cortisol resulting from elevated body temperatures, previously reported based on affinity measurements using nonglycosylated recombinant CBG, were shown here to be considerably increased using glycosylated plasma CBG, with a doubling for every 2°C rise in body temperature.Conclusions:The ability of CBG to modulate free cortisol levels in blood must be considered in the understanding and management of disease processes, as illustrated here with predictable changes in inflammation and fever.
The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr342 of the reactive loop and Tyr241 of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys243, which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg378. Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature.
The Ccm cytochrome c maturation System I catalyzes covalent attachment of heme to apocytochromes c in many bacterial species and some mitochondria. A covalent, but transient, bond between heme and a conserved histidine in CcmE along with an interaction between CcmH and the apocytochrome have been previously indicated as core aspects of the Ccm system. Here, we show that in the Ccm system from Desulfovibrio desulfuricans, no CcmH is required, and the holo-CcmE covalent bond occurs via a cysteine residue. These observations call for reconsideration of the accepted models of System I-mediated c-type cytochrome biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.