Lumpy skin disease (LSD) is one of the most important transboundary and emerging diseases in cattle. The disease causes significant economic losses in animal production and trade worldwide. The first LSD outbreak was recorded in March 2021, at Roi‐Et province in the northeastern region of Thailand. Thereafter, the disease had rapidly spread into neighbouring provinces and throughout the country. The aim of the present study was to provide information regarding to the molecular detection and characterization of LSD viruses from outbreaks in Thailand in 2021. There were 1,748,112 susceptible and 604,404 affected animals (n = 588,512 [36.30%], beef cattle; n = 12,367 [15.74%], dairy cattle and n = 3524 [7.35%], buffaloes). The morbidity and mortality rates were 34.57% and 3.47%, respectively, and the case fatality rate was 10.05% (60,713 deaths). Based on real‐time polymerase chain reaction results, the p32 gene of LSD virus (LSDV) was detected more frequently in skin nodule samples (54/77, 70.13%) than in nasal swabs (26/55, 42.57%) and EDTA blood (16/77, 20.78%) samples. Moreover, the copy number of the p32 gene was higher in skin nodule samples than in nasal swab and EDTA blood samples (cycle threshold value = 21.94 ± 0.62 vs. 31.52 ± 0.66 and 34.27 ± 0.32, respectively). Furthermore, 29 (53.70%) of 54 capripoxvirus‐positive skin nodule samples were successfully isolated from Madin–Darby bovine kidney cells, and the cytopathic effect was observed 72 h after inoculation. Based on the phylogenetic trees of the GPCR, ANK and RPO30 gene sequences, the LSDV isolates from Thailand were distinct from both the LSDV‐field and LSDV‐vaccine groups and were closely correlated with the LSDV strains isolated from mainland China, Hong Kong territory and Vietnam in 2020. Additionally, they could be a potential virulent vaccine‐recombinant LSDV strain.
The present study conducted serosurveillance for the presence of antibody to pandemic influenza A (H1N1) 2009 virus (H1N1pdm virus) in archival serum samples collected between 2009 and 2013 from 317 domestic elephants living in 19 provinces situated in various parts of Thailand.To obtain the most accurate data, hemagglutination-inhibition (HI) assay was employed as the screening test; and sera with HI antibody titers ≥20 were further confirmed by other methods, including cytopathic effect/hemagglutination based-microneutralization (microNT) and Western blot (WB) assays using H1N1pdm matrix 1 (M1) or hemagglutinin (HA) recombinant protein as the test antigen. Conclusively, the appropriate assays using HI in conjunction with WB assays for HA antibody revealed an overall seropositive rate of 8.5% (27 of 317). The prevalence of antibody to H1N1pdm virus was 2% (4/172) in 2009, 32% (17/53) in 2010, 9% (2/22) in 2011, 12% (1/8) in 2012, and 5% (3/62) in 2013. Notably, these positive serum samples were collected from elephants living in 7 tourist provinces of Thailand. The highest seropositive rate was obtained from elephants in Phuket, a popular tourist beach city. Young elephants had higher seropositive rate than older elephants.The source of H1N1pdm viral infection in these elephants was not explored, but most likely came from close contact with the infected mahouts or from the infected tourists who engaged in activities such as elephant riding and feeding. Nevertheless, it could not be excluded that elephant-to-elephant transmission did occur.
Background and Aim: Elephant endotheliotropic herpesvirus (EEHV) is a serious disease, threatening the life of young elephants. Many elephants have been infected with no clinical signs and may serve as carriers spreading this disease. It is important to monitor the disease through clinical signs and molecular diagnosis. In this study we investigated the occurrence of EEHV and the efficiency of different techniques used to monitor EEHV infection in various samples and populations of Asian elephants. Materials and Methods: Blood and trunk swabs were collected from live elephants, while visceral organs (lung, digestive tract, spleen, lymph nodes, and kidney) were collected from dead elephants. EEHV was detected by polymerase chain reaction (PCR) in whole blood, trunk swabs, and visceral organs as samples, while elephant anti-EEHV immunoglobulin G (IgG) in serum was detected by enzyme-linked immunosorbent assay (ELISA). A total of 162 samples were analyzed in this study: 129 from healthy, 26 from dead, and 7 from sick elephants. Results: The present study showed that the overall incidence of EEHV was 40.1% (n=65/162). Approximately 46.2% (n=12/26) and 85.7% (n=6/7) of dead and sick elephants were positive for EEHV by PCR, respectively. All sick elephants that were young and affected by EEHV clinical disease tested negative for the IgG antibody ELISA, suggesting primary EEHV infection in this group. In addition, 2.3% (n=3/129) of subclinical infections were detected using PCR, and trunk swab samples showed slightly higher sensitivity (5.3%, n=2/38) to detect EEHV than whole blood (1.2%, n=1/84). As many as, 48.4% (n=44/91) of healthy elephants were EEHV seropositive (ELISA-positive), suggesting that many elephants in Thailand had previously been infected. Overall, 30% of dead wild elephants had been infected with EEHV (n=3/10). Moreover, statistical analysis revealed no significant differences in the EEHV detection rate between different age groups or sexes (p>0.05). Conclusion: PCR is better than ELISA to detect EEHV active infection in dead/sick elephants and to monitor EEHV in young elephants. ELISA is suitable for detecting previous EEHV infection and carriers, particularly adults. Theoretically, we could use both PCR and ELISA to increase the sensitivity of testing, along with observing abnormal behavior to efficiently monitor this disease. Identification of EEHV carriers within elephant populations is important to prevent transmission to healthy individuals, especially young elephants with high mortality from EEHV. This is the first report from Thailand regarding EEHV infection in wild elephants, showing the importance of preventing disease transmission between captive and wild elephants.
Influenza virus is known to affect wild felids. To explore the prevalence of influenza viruses in these animal species, 196 archival sera from 5 felid species including Panthera tigris (N=147), Prionailurus viverrinus (N=35), Panthera leo (N=5), Pardofelis temminckii (N=8) and Neofelis nebulosa (N=1) collected between 2011 and 2015 in 10 provinces of Thailand were determined for the presence of antibody to avian and human influenza viruses. Blocking enzyme-linked immunosorbent (ELISA) assay and hemagglutination inhibition (HI) assay were employed as the screening tests, which the serum samples with HI antibody titers ≥20 were further confirmed by cytopathic effect/hemagglutination based-microneutralization (CPE/HA-based microNT) test. Based on HI and microNT assays, the seropositive rates of low pathogenic avian influenza (LPAI) H5 virus, highly pathogenic avian influenza (HPAI) H5 virus and human H1 virus were 1.53% (3/196), 2.04% (4/196) and 6.63% (13/196), respectively. In addition, we also found antibody against both LPAI H5 virus and HPAI H5 virus in 2 out of 196 tested sera (1.02%). Evidences of influenza virus infection were found in captive P. tigris in Kanchanaburi, Nakhon Sawan and Ratchaburi provinces of Thailand. The findings of our study highlights the need of a continuous active surveillance program of influenza viruses in wild felid species.
Background and Aim: For a decade, chlamydial and herpesvirus infections have caused significant morbidity and mortality in farmed crocodiles. In September 2017, a total of 160 juvenile freshwater Siamese crocodiles (Crocodylus siamensis) with conjunctivitis/pharyngitis lesions were admitted at the Veterinary Aquatic Animal Research Health Care Unit, Faculty of Veterinary Science, Mahidol University. All crocodiles did not respond well to antibiotics or supportive treatments and died. This study aimed to detect and identify the causative agents associated with conjunctivitis/pharyngitis and fatal outcomes in juvenile farmed Siamese crocodiles. Materials and Methods: A total of 138 pharyngeal and conjunctival swabs and conjunctival scrapes were collected from live crocodiles. All swab and scrape samples were DNA-extracted and amplified by polymerase chain reaction (PCR) using Chlamydiaceae- and herpesvirus-specific primers. Tissue samples (brain, lung, liver, heart, spleen, and intestine) were collected from two representative postmortem animals. All tissue samples were processed for molecular and pathological analyses. Results: PCR examinations identified chlamydial and herpesvirus DNA in 92% (126/138) and 100% (138/138), respectively, of the tested swab and scrape samples. Of those positive samples, 79% (26/33), 67% (4/6), and 98% (97/99) of the pharyngeal swabs, conjunctival swabs, and conjunctival scrapes, respectively, were positive for both chlamydial and herpesvirus DNA. Histopathological examination indicated necrosis and mononuclear cell infiltration in the liver, kidney, and intestine of the affected animals. The intracytoplasmic accumulation of Chlamydia was randomly observed in the examined tissue sample. Moreover, the presence of chlamydial and herpesvirus DNA was also detected in the tissue samples, including the heart, intestine, brain, lung, liver, and spleen, of the affected animals by PCR. Phylogenetic analyses revealed that Chlamydia spp. detected in the juvenile Siamese crocodiles was notably different from other known species in the Chlamydia genus, while the herpesvirus detected in the crocodiles was closely related to crocodyline herpesvirus 1. Conclusion: Based on histopathological and molecular examinations, this report provided the first evidence of coinfection of Chlamydia spp. and crocodyline herpesvirus 1 in juvenile Siamese crocodiles in Thailand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.