To our knowledge, there have been no other reported cases of warfarin-marijuana interaction. While more clinical reports would be useful to confirm this interaction, clinicians should be aware of its probability so as to manage patients appropriately.
Class III antiarrhythmic drugs, especially amiodarone (a broad-spectrum antiarrhythmic agent), have gained popularity for use in clinical practice in recent years. Other class III antiarrhythmic drugs include bretylium, dofetilide, ibutilide and sotalol. These agents are effective for the management of various types of cardiac arrhythmias both atrial and ventricular in origin. Class III antiarrhythmic drugs may interact with other drugs by two major processes: pharmacodynamic and pharmacokinetic interactions. The pharmacodynamic interaction occurs when the pharmacological effects of the object drug are stimulated or inhibited by the precipitant drug. Pharmacokinetic interactions can result from the interference of drug absorption, metabolism and/or elimination of the object drug by the precipitant drug. Among the class III antiarrhythmic drugs, amiodarone has been reported to be involved in a significant number of drug interactions. It is mainly metabolised by cytochrome P450 (CYP)3A4 and it is a potent inhibitor of CYP1A2, 2C9, 2D6 and 3A4. In addition, amiodarone may interact with other drugs (such as digoxin) via the inhibition of the P-glycoprotein membrane transporter system, a recently described pharmacokinetic mechanism of drug interactions. Bretylium is not metabolised; it is excreted unchanged in the urine. Therefore the interactions between bretylium and other drugs (including other antiarrhythmic drugs) is primarily through the pharmacodynamic mechanism. Dofetilide is metabolised by CYP3A4 and excreted by the renal cation transport system. Drugs that inhibit CYP3A4 (such as erythromycin) and/or the renal transport system (such as triamterene) may interact with dofetilide. It appears that the potential for pharmacokinetic interactions between ibutilide and other drugs is low. This is because ibutilide is not metabolised by CYP3A4 or CYP2D6. However, ibutilide may significantly interact with other drugs by a pharmacodynamic mechanism. Sotalol is primarily excreted unchanged in the urine. The potential for drug interactions due to hepatic enzyme induction or inhibition appears to be less likely. However, a number of drugs (such as digoxin) have been reported to interact with sotalol pharmacodynamically. If concurrent use of a class III antiarrhythmic agent and another drug cannot be avoided or no published studies for that particular drug interaction are available, caution should be exercised and close monitoring of the patient should be performed in order to avoid or minimise the risks associated with a possible adverse drug interaction.
The INR values measured before and after concomitant levofloxacin therapy were not significantly different. However, the ability to detect a significant difference may be affected by the small number of patients studied. Further studies with a larger sample are required to better determine the effect of levofloxacin coadministration on INR monitoring during warfarin therapy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.