Phytochemical investigation of leaves and stembark of Artocarpuslacucha collected in Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1–3), the four known compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol (7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging activities for 1 (EC50 = 9.4 ± 1.0 µmol mL−1), 2 (12.2 ± 1.1), 3 (10.0 ± 1.5) and 4 (19.0 ± 2.6), remarkably lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and SW480 (colon carcinoma) cells, with IC50 values of 25 ± 6 and 34 ± 4 µM, respectively, whereas effects in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of 1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment.
Comprehensive phytochemical examination from different perspectives using preparative and analytical chromatographic techniques combined with spectroscopic/spectrometric methods of the so-called “yellow twig” Nauclea orientalis (L.) L. (Rubiaceae) led to the identification of 13 tryptamine-derived (=monoterpene-indole) alkaloids. The identified alkaloids comprise strictosamide and four of its glucosidic derivatives, three oxindole derivatives, and five yellow-colored angustine-type aglycones. Qualitative and quantitative HPLC analyses showed the enrichment of strictosamide in all studied organs. Based on these results, we performed metabolomic analyses of monoterpene-indole alkaloids and made a 1H NMR in vitro monitoring of enzymatic deglucosylation of strictosamide. A comparison of the stability of strictosamide and its enantiomer vincoside lactam by theoretical calculations was also performed revealing a slightly higher stability of vincoside lactam. Additionally, we conducted two different anti-feedant assays of strictosamide using larvae of the polyphageous moth Spodoptera littoralis Boisduval. The obtained results indicate that generally two different biosynthetic pathways are most likely responsible for the overall alkaloid composition in this plant. Strictosamide is the key compound in the broader pathway and most likely the source of the identified angustine-type aglycones, which may contribute significantly to the yellow color of the wood. Its cross-organ accumulation makes it likely that strictosamide is not only important as a reservoir for the further biosynthesis, but also acts in the plants’ defense strategy.
Calcium methoxide obtained from quick lime is used as a solid catalyst in the transesterification reaction between palm stearin with methanol using tetrahydrofuran (THF) as co-solvent for biodiesel production. In this work, quick lime was used to prepare calcium oxide by heat treatment at the different temperatures, after that calcium oxide was further reacted with methanol to produce calcium methoxide catalyst. The properties of Calcium methoxide (Ca(OCH3)2) was characterized by XRD, SEM, BET, TGA, EDX and FTIR. The optimum conditions of biodiesel production were studied through response surface methodology and central composite design. The conversion of fatty acid methyl ester (FAME) was determined by proton nuclear magnetic resonance spectroscopy (1H-NMR). The results depicted that calcined quick lime at 800 °C for 3 h contained high calcium oxide content. The Ca(OCH3)2 catalyst prepared at 65 °C for 3 h gave high surface area and catalytic activity. The optimum conditions for biodiesel production were 2.33% w/w of catalyst, 1 : 9.39 of palm stearin to methanol molar ratio, 102 min of reaction time and 9.07% v/v based on methanol of THF co-solvent, the same condition gave 98.23% of FAME conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.