Shoulder internal rotation, elbow extension, and wrist flexion/extension ROM, CVRT, and wrist flexion/extension muscle strength are important to WCB performance and should be addressed in WCB training.
BackgroundAdults with sedentary lifestyles seem to face a higher risk of falling in their later years. Several causes, such as impairment of strength, coordination, and cognitive function, influence worsening health conditions, including balancing ability. Many modalities can be applied to improve the balance function and prevent falling. Several studies have also recorded the effects of balance training in elderly adults for fall prevention. Accordingly, the aim of this study is to define the effect of virtual reality-based balance training on motor learning and postural control abilities in healthy adults.MethodsFor this study, ten subjects were randomly allocated into either the conventional exercise (CON) or the virtual reality (VR) group. The CON group underwent physical balance training, while the VR group used the virtual reality system 4 weeks. In the VR group, the scores from three game modes were utilized to describe the effect of motor learning and define the learning curves that were derived with the power law function. Wilcoxon Signed Ranks Test was performed to analyze the postural control in five standing tasks, and data were collected with the help of a force plate.ResultsThe average score was used to describe the effect of motor learning by deriving the mathematical models for determining the learning curve. Additionally, the models were classified into two exponential functions that relied on the aim and requirement skills. A negative exponential function was observed in the game mode, which requires the cognitive-motor function. In contrast, a positive exponential function was found in the game with use of only the motor skill. Moreover, this curve and its model were also used to describe the effect of learning in the long term and the ratio of difficulty in each game. In the balance performance, there was a significant decrease in the center of pressure parameters in the VR group, while in the CON group, there was a significant increase in the parameters during some foot placements, especially in the medio-lateral direction.ConclusionThe proposed VR-based training relies on the effect of motor learning in long-term training though different kinds of task training. In postural analysis, both exercise programs are emphasized to improve the balance ability in healthy adults. However, the virtual reality system can promote better outcomes to improve postural control post exercising.Trial registration Retrospectively registered on 25 April 2018. Trial number TCTR20180430005Electronic supplementary materialThe online version of this article (10.1186/s12938-018-0550-0) contains supplementary material, which is available to authorized users.
BackgroundThe purpose of this study was to investigate the effect of an ACL Kinesio Taping technique (ACL-KT) on knee joint biomechanics during a drop vertical jump (DVJ).MethodsTwenty healthy male participants (age 21.1±0.3 years; mass 64.2±4.3 kg; height 174.2±5.5 cm) participated in this study. The participants performed a DVJ and landed onto 2 adjacent force platforms under both ACL-KT and placebo (PT) conditions. All data were collected with 3-D motion analysis and comparison peak knee joint angles and moments, and knee joint angle at initial contact (IC) between conditions analyzed using a paired sample t-test. Statistical parametric mapping (SPM) was selected to assess difference between groups for the entire three-component knee trajectory during the contact phase.ResultsACL-KT had a significant effect on decreasing knee abduction angle at IC (1.43±2.12 deg.) compared with the PT (−1.24±2.42 deg.) (p=0.04). A significant difference in knee abduction angle between the taping conditions was found between 100 ms before IC, at IC and 100 ms after IC (p<0.05). There were no significant differences (p>0.05) found between conditions in any of the other variables.ConclusionThis result confirmed that the application of ACL-KT is useful to reduce knee abduction angle at IC during a DVJ in healthy participants. Therefore, ACL-KT may be an acceptable intervention to reduce ACL injury risk.Trial registrationRetrospective registered on 25 September 2018. Trial number: TCTR20180926005
[Purpose] The purpose of this study was to assess the sagittal angles and moments of lower extremity joints during single-leg jump landing in various directions. [Subjects] Eighteen male athletes participated in the study. [Methods] Participants were asked to perform single-leg jump-landing tests in four directions. Angles and net joint moments of lower extremity joints in the sagittal plane were investigated during jump-landing tests from a 30-cm-high platform with a Vicon™ motion system. The data were analyzed with one-way repeated measures ANOVA. [Results] The results showed that knee joint flexion increased and hip joint flexion decreased at foot contact. In peak angle during landing, increasing ankle dorsiflexion and decreasing hip flexion were noted. In addition, an increase in ankle plantarflexor moment occurred. [Conclusion] Adjusting the dorsiflexion angle and plantarflexor moment during landing might be the dominant strategy of athletes responding to different directions of jump landing. Decreasing hip flexion during landing is associated with a stiff landing. Sport clinicians and athletes should focus on increasing knee and hip flexion angles, a soft landing technique, in diagonal and lateral directions to reduce risk of injury.
IntroductionThe Stay Independent Brochure (SIB) is a widely used fall-risk self-assessment tool, which is part of the Stopping Elderly Accident, Deaths & Injuries (STEADI) program in the US. However, the validity and reliability of the SIB have not been established in an elderly Thai population.ObjectiveTo construct a fall risk screening tool based on the SIB in a Thai elderly population and investigate its psychometric effect in a community context.MethodsA total of 480 elderly participants volunteered to take part in this study from the Nakhon Ratchasima province. In the first part of the study, the original version of the SIB was translated into Thai (total 12 questions) and adapted into a modified version (total 18 questions). The translated SIBs were cross-culturally adapted and tested for content validity, test-retest reliability, inter-rater reliability, construct validity and internal consistency. In the second part of the study, the psychometric properties of the translated SIBs were assessed using test-retest and inter-rater reliability and content and construct validity.ResultsThe SIBs had good content validity (IOC: 0.80 to 1.00), and the interclass correlation coefficient (ICC) of test-retest and inter-rater reliability was excellent for both SIB versions (ICC 0.89–0.95). The construct validity of 18 questions was tested by principal component factor analysis with varimax rotation and using factor loading greater than 0.4, and yielded 6 factors that explained 59.1% of the variance in fall risk (more than 12 questions). The coefficient alpha was higher than the usually recommended value of 0.70 for the total score of both SIB versions. The convergent validity between the TUG and BBS tests was statistically significant (p<0.001).ConclusionBased on psychometric properties, it is recommended that the two Thai versions of the SIB are an appropriate initial screening tool for the multi-steps fall risk assessment algorithm in predicting falls in an elderly Thai community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.