In this research, natural rubber (NR)-TiO2 nanocomposites were developed for triboelectric nanogenerator (TENG) application to harvest mechanical energy into electrical energy. Rutile TiO2 nanoparticles were used as fillers in NR material to improve dielectric properties so as to enhance the energy conversion performance of the NR composite TENG. The effect of filler concentration on TENG performance of the NR-TiO2 composites was investigated. In addition, ball-milling method was employed to reduce the agglomeration of TiO2 nanoparticles in order to improve their dispersion in the NR film. It was found that the TENG performance was significantly enhanced due to the increased dielectric constant of the NR-TiO2 composite films fabricated from the ball-milled TiO2. The TENG, fabricated from the NR-TiO2 composite using 24 h ball-milled TiO2 at 0.5%wt, delivered the highest power density of 237 mW/m2, which was almost four times higher than that of pristine NR TENG. Furthermore, the applications of the fabricated NR-TiO2 TENG as a power source to operate portable electronics devices were also demonstrated.
An environmentally friendly triboelectric nanogenerator (TENG) is fabricated from a natural rubber (NR)-Ag nanocomposite for harvesting mechanical energy from human motions. Ag nanoparticles (AgNPs) synthesized with two different capping agents are added to NR polymer for improving dielectric constant that contributes to the enhancement of TENG performance. Dielectric constant is modulated via interfacial polarization between AgNPs and NR matrix. The effects of AgNP concentration, particle size and dispersion in NR composite, and type of capping agents on dielectric properties and electrical output of the NR composite TENG are elucidated. It is found that, apart from AgNPs content in the NR-Ag nanocomposite, cations of CTAB capping agent play important roles not only on the dispersion of AgNPs in NR matrix but also on intensifying tribopositive charges in the NR composite. In addition, the application of the NR-Ag TENG as a shoe insole is also demonstrated to convert human footsteps into electricity to power small electronic devices. Furthermore, with the presence of Ag nanoparticles, the fabricated shoe insole also exhibits antibacterial property against Staphylococcus aureus that causes foot odor.
Cellulose-based materials have recently drawn much interest due to their sustainability, biodegradability, biocompatibility, and low cost. In this present work, cellulose fiber paper (CFP) was fabricated from sugarcane leaves and used as a friction material for a triboelectric nanogenerator (TENG). Fe3O4 was incorporated to CFP triboelectric material to increase the dielectric constant of CFP for boosting power generation of TENG. The Fe3O4 filled CFP was synthesized using a facile one-pot co-precipitation technique. The effect of Fe3O4 content in CFP on dielectric property and TENG performance was investigated and optimized. The CFP filled with Fe3O4 nanoparticles exhibited the improved dielectric constant and possessed a superior TENG performance than pristine CF. The highest power density of 1.9 W/m2 was achieved, which was able to charge commercial capacitors serving as a power source for small electronic devices.
The triboelectric nanogenerator (TENG) is a newly developed energy harvesting technology that can convert mechanical energy into electricity. The TENG has received extensive attention due to its potential applications in diverse fields. In this work, a natural based triboelectric material has been developed from a natural rubber (NR) filled with cellulose fiber (CF) and Ag nanoparticles. Ag nanoparticles are incorporated into cellulose fiber (CF@Ag) and are used as a hybrid filler material for the NR composite to enhance the energy conversion efficiency of TENG. The presence of Ag nanoparticles in the NR-CF@Ag composite is found to improve the electrical power output of the TENG by promoting the electron donating ability of the cellulose filler, resulting in the higher positive tribo-polarity of NR. The NR-CF@Ag TENG shows significant improvement in the output power up to five folds compared to the pristine NR TENG. The findings of this work show a great potential for the development of a biodegradable and sustainable power source by converting mechanical energy into electricity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.