Background: A composite metric for the quality of glycemia from continuous glucose monitor (CGM) tracings could be useful for assisting with basic clinical interpretation of CGM data. Methods: We assembled a data set of 14-day CGM tracings from 225 insulin-treated adults with diabetes. Using a balanced incomplete block design, 330 clinicians who were highly experienced with CGM analysis and interpretation ranked the CGM tracings from best to worst quality of glycemia. We used principal component analysis and multiple regressions to develop a model to predict the clinician ranking based on seven standard metrics in an Ambulatory Glucose Profile: very low–glucose and low-glucose hypoglycemia; very high–glucose and high-glucose hyperglycemia; time in range; mean glucose; and coefficient of variation. Results: The analysis showed that clinician rankings depend on two components, one related to hypoglycemia that gives more weight to very low-glucose than to low-glucose and the other related to hyperglycemia that likewise gives greater weight to very high-glucose than to high-glucose. These two components should be calculated and displayed separately, but they can also be combined into a single Glycemia Risk Index (GRI) that corresponds closely to the clinician rankings of the overall quality of glycemia (r = 0.95). The GRI can be displayed graphically on a GRI Grid with the hypoglycemia component on the horizontal axis and the hyperglycemia component on the vertical axis. Diagonal lines divide the graph into five zones (quintiles) corresponding to the best (0th to 20th percentile) to worst (81st to 100th percentile) overall quality of glycemia. The GRI Grid enables users to track sequential changes within an individual over time and compare groups of individuals. Conclusion: The GRI is a single-number summary of the quality of glycemia. Its hypoglycemia and hyperglycemia components provide actionable scores and a graphical display (the GRI Grid) that can be used by clinicians and researchers to determine the glycemic effects of prescribed and investigational treatments.
BackgroundRates for Diabetes Mellitus continue to rise in most urban areas of the United States, with a disproportionate burden suffered by minorities and low income populations. This paper presents an approach that utilizes address level data to understand the geography of this disease by analyzing patients seeking diabetes care through an emergency department in a Los Angeles County hospital. The most vulnerable frequently use an emergency room as a common care access point, and such care is especially costly. A fine scale GIS analysis reveals hotspots of diabetes related health problems and provides output useful in a clinic setting. Indeed these results were used to support the work of a progressive diabetes clinic to guide management and intervention strategies.ResultsHotspots of diabetes related health problems, including neurological and kidney issues were mapped for vulnerable populations in a central section of Los Angeles County. The resulting spatial grid of rates and significance were overlaid with new patient residential addresses attending an area clinic. In this way neighbourhood diabetes health characteristics are added to each patient's individual health record. Of the 29 patients, 4 were within statistically significant hotspots for at least one of the conditions being investigated.ConclusionsAlthough exploratory in nature, this approach demonstrates a novel method to conduct GIS based investigations of urban diabetes while providing support to a progressive diabetes clinic looking for novel means of managing and intervention. In so doing, this analysis adds to a relatively small literature on fine scale GIS facilitated diabetes research. Similar data should be available for most hospitals, and with due consideration for preserving spatial confidentiality, analysis outputs such as those presented here should become more commonly employed in other investigations of chronic diseases.
The digital health revolution is transforming the landscape of medicine through innovations in sensor data, software, and wireless communication tools. As one of the most prevalent chronic diseases in the United States, diabetes is particularly impactful as a model disease for which to apply innovation. As with any other newly developed technologies, there are three key questions to consider: 1) How can the technology benefit people with diabetes?, 2) What barriers must be overcome to further advance the technology?, and 3) How will the technology be applied in the future?. In this article, we highlight six areas of innovation that have the potential to reduce the burden of diabetes for individuals living with the condition and their families as well as provide measurable benefits for all stakeholders involved in diabetes care. The six technologies which have the potential to transform diabetes care are (i) telehealth, (ii) incorporation of diabetes digital data into the electronic health record, (iii) qualitative hypoglycemia alarms, (iv) artificial intelligence, (v) cybersecurity of diabetes devices, and (vi) diabetes registries. To be successful, a new digital health technology must be accessible and affordable. Furthermore, the people and communities that would most likely benefit from the technology must be willing to use the innovation in their management of diabetes.
Diabetes Technology Society hosted its annual Diabetes Technology Meeting from November 3 to November 5, 2022. Meeting topics included (1) the measurement of glucose, insulin, and ketones; (2) virtual diabetes care; (3) metrics for managing diabetes and predicting outcomes; (4) integration of continuous glucose monitor data into the electronic health record; (5) regulation of diabetes technology; (6) digital health to nudge behavior; (7) estimating carbohydrates; (8) fully automated insulin delivery systems; (9) hypoglycemia; (10) novel insulins; (11) insulin delivery; (12) on-body sensors; (13) continuous glucose monitoring; (14) diabetic foot ulcers; (15) the environmental impact of diabetes technology; and (16) spinal cord stimulation for painful diabetic neuropathy. A live demonstration of a device that can allow for the recycling of used insulin pens was also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.