Although researchers have made great progress in the development of responsive polymeric materials for controlled drug release or diagnostics over the last 10 years, therapeutic results still lag behind expectations. The development of special materials that respond to physiological relevant concentrations, typically within the micromolar or nanomolar concentration regime, remains challenging. Therefore, researchers continue to pursue new biomaterials with unique properties and that respond to mild biochemical signals or biomarkers. Selenium is an essential element in human body with potential antioxidant properties. Because of selenium's electronegativity and atomic radius, selenium-containing compounds exhibit unique bond energy (C-Se bond 244 kJ mol⁻¹; Se-Se bond 172 kJ mol⁻¹). These values give the C-Se or Se-Se covalent bonds dynamic character and make them responsive to mild stimuli. Therefore, selenium-containing polymers can disassemble in response to changes under physiological relevant conditions. This property makes them a promising biomaterial for controlled release of drugs or synthetic enzyme mimics. Until recently, few researchers have looked at selenium-containing polymers as novel biomaterials. In this Account, we summarize our recent research on selenium-containing polymers and show their potential application as mild-responsive drug delivery vehicles and artificial enzymes. We begin by reviewing the current state of the art in the synthesis of selenium-containing main chain block copolymers. We highlight the dual redox and gamma-irradiation behaviors of diselenide-containing block copolymers assemblies, discussing the possibility of their use in a combination of chemotherapy and actinotherapy. We also describe the coordination of platinum with monoselenide containing block copolymers. Such structures offer the possibility of fabricating multidrug systems for cooperative chemotherapy. In addition, we summarize the methods for the covalent and noncovalent preparation of selenium-containing polymers with side chains, which highlight the opportunity to reversibly tune the amphiphilicity of selenium-containing polymers. Finally, we present strategies for the design of highly efficient selenium-containing dendritic polymers that can mimic enzymes. This field is still in its infancy period, and further research can only be limited by our imagination.
Visible light is an easily achievable and mild trigger for self-healing materials. By incorporating dynamic diselenide bonds into polyurethane, visible-light-induced self-healing materials can be fabricated. Besides mild visible light, the healing process can also be realized using directional laser irradiation, which makes the system a remotely controllable self-healing system.
Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.
Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five typeseumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelaninbased on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melaninbased materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure−function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.
Kinetics and cryo-electronmicroscopy data provide insights into GTPase ObgE’s role as a ribosome anti-association factor that is modulated by nutrient availability, coupling growth control to ribosome biosynthesis and protein translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.