Long-term monitoring of constructed anti-slide piles can help in understanding the processes by which anti-slide piles are subjected to the thrust of landslides. This paper examined the landslide control project of Badong No. 3 High School. The internal force of an anti-slide pile subjected to long-term action of landslide thrust was studied by Distributed Optical Fiber Sensing (DOFS) technology. The BP neural network was used for model training on the monitored strain values and the calculated bending moment values. The results show the following: (1) The monitoring results of the sensor fibers reflect the actual situation more accurately than steel rebar meters do and can locate the position of the sliding zone more accurately. (2) The bending moments distributed along the anti-slide pile have staged characteristics under the long-term action of landslide thrust. Three stages can be summarized according to the development trend of the bending moment values. These three stages can be divided into two change periods of landslide thrust. (3) The model produced by the BP neural network training can predict the bending moment values. In this paper, the sensing fibers monitoring over a long time interval provides a basis for long-term performance analysis of anti-slide piles and stability evaluation of landslides. Using the BP neural network for training relevant data can provide directions for future engineering monitoring. More novel methods can be devised and utilized that will be both accurate and convenient.
The strain coefficient of an optical fibre sensing cable is a critical parameter for a distributed optical fibre sensing system. The conventional tensile load test method tends to underestimate the strain coefficient of sensing cables due to slippage or strain transfer loss at the fixing points during the calibration procedure. By optimizing the conventional tensile load test setup, the true strain of a sensing cable can be determined by using two sets of displacement measuring equipment. Thus, the strain calculation error induced by slippage or strain transfer loss between a micrometre linear stage and sensing cable can be avoided. The performance of the improved calibration method was verified by using three types of sensing cables with different structures. In comparison to the conventional tensile load test method, the strain coefficients obtained by the improved calibration method for sensing cables A, B, and C increase by 1.52%, 2.06%, and 1.86%, respectively. Additionally, the calibration errors for the improved calibration method are discussed. The test results indicate that the improved calibration method has good practicability and enables inexperienced experimenters or facilities with limited equipment to perform precise strain coefficient calibration for optical fibre sensing cables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.