Landslides cause a considerable amount of damage around the world every year. Landslide susceptibility assessments are useful for the mitigation of the associated potential risks to local economic development, land use planning, and decision makers. The main aim of this study was to present a novel hybrid approach of bagging (B)-based kernel logistic regression (KLR), named the BKLR model, for spatial prediction of landslides in the Shangnan County, China. We first selected 15 conditioning factors for landslide susceptibility modeling. Then, the prediction capability of all conditioning factors was evaluated using the least square support vector machine method. Model validation and comparison were performed based on the area under the receiver operating characteristic curve and several statistical-based indexes, including positive predictive rate, negative predictive rate, sensitivity, specificity, kappa index, and root mean square error. Results indicated that the BKLR ensemble model outperformed and outclassed the KLR and the benchmark support vector machine model. Our findings overall confirmed that a combination of the meta model with a decision tree classifier based on a functional algorithm can decrease the over-fitting and variance problems of data, which could enhance the prediction power of the landslide model. The resultant susceptibility maps could be useful for hazard mitigation in the study area and other similar landslide-prone areas.
The runoff in the upper reaches of the Heihe River has been continuously abundant for more than a decade, and this has not happened previously in history. Quantitative analysis of runoff variation and its influencing factors are of great significance for the ecological protection of the basin. In this paper, the soil and water assessment tool model was used to simulate runoff in the study area, and the method of scenario simulation was used to quantitatively analyze the runoff response with respect to land use and climate change. According to the abruptness of the runoff sequence, the years before 2004 are categorized as belonging to the reference period, and after 2004 is categorized as the interference period. According to the analysis, compared with the reference period, the contribution rate of climate change is 87.15%, while the contribution rate of land use change is only 12.85%. The climate change scenario simulation analysis shows that the change in runoff is positively correlated with the change in precipitation. The relationship with the change in temperature is more complicated, but the influence of precipitation change is stronger than the change in temperature. According to the land use scenario simulation analysis, under the economic development scenario, the runoff decreased, whereas under the historical trend and ecological protection scenario, the runoff increased. Additionally, the runoff increased more under the ecological protection scenario.
Landslides are usually initiated under complex geological conditions. It is of great significance to find out the optimal combination of predisposing factors and create an accurate landslide susceptibility map based on them. In this paper, the Information Value Model was modified to make the Modified Information Value (MIV) Model, and together with GIS (Geographical Information System) and AUC (Area Under Receiver Operating Characteristic Curve) test, 32 factor combinations were evaluated separately, and factor combination group with members Slope, Lithology, Drainage network, Annual precipitation, Faults, Road and Vegetation was selected as the optimal combination group with an accuracy of 95.0%. Based on this group, a landslide susceptibility zonation map was drawn, where the study area was reclassified into five classes, presenting an accurate description of different levels of landslide susceptibility, with 79.41% and 13.67% of the validating field survey landslides falling in the Very High and High zones, respectively, mainly distributed in the south and southeast of the catchment. It showed that MIV model can tackle the problem of "no data in subclass" well, generate the true information value and show real running trend, which performs well in showing the relationship between predisposing factors and landslide occurrence and can be used for preliminary landslide susceptibility assessment in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.