The recent dramatic rise in power conversion efficiencies (PCEs) of perovskite solar cells (PSCs) has triggered intense research worldwide. However, high PCE values have often been reached with poor stability at an illuminated area of typically less than 0.1 square centimeter. We used heavily doped inorganic charge extraction layers in planar PSCs to achieve very rapid carrier extraction, even with 10- to 20-nanometer-thick layers, avoiding pinholes and eliminating local structural defects over large areas. The robust inorganic nature of the layers allowed for the fabrication of PSCs with an aperture area >1 square centimeter that have a PCE >15%, as certified by an accredited photovoltaic calibration laboratory. Hysteresis in the current-voltage characteristics was eliminated; the PSCs were stable, with >90% of the initial PCE remaining after 1000 hours of light soaking.
The conversion of heat to electricity by thermoelectric devices may play a key role in the future for energy production and utilization. However, in order to meet that role, more efficient thermoelectric materials are needed that are suitable for high-temperature applications. We show that the material system AgPb(m)SbTe(2+m) may be suitable for this purpose. With m = 10 and 18 and doped appropriately, n-type semiconductors can be produced that exhibit a high thermoelectric figure of merit material ZTmax of approximately 2.2 at 800 kelvin. In the temperature range 600 to 900 kelvin, the AgPb(m)SbTe(2+m) material is expected to outperform all reported bulk thermoelectrics, thereby earmarking it as a material system for potential use in efficient thermoelectric power generation from heat sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.