The Atlantic meridional overturning circulation (AMOC) simulated by 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) for the historical (1850–2005) and future climate is examined. The historical simulations of the AMOC mean state are more closely matched to observations than those of phase 3 of the Coupled Model Intercomparison Project (CMIP3). Similarly to CMIP3, all models predict a weakening of the AMOC in the twenty-first century, though the degree of weakening varies considerably among the models. Under the representative concentration pathway 4.5 (RCP4.5) scenario, the weakening by year 2100 is 5%–40% of the individual model's historical mean state; under RCP8.5, the weakening increases to 15%–60% over the same period. RCP4.5 leads to the stabilization of the AMOC in the second half of the twenty-first century and a slower (then weakening rate) but steady recovery thereafter, while RCP8.5 gives rise to a continuous weakening of the AMOC throughout the twenty-first century. In the CMIP5 historical simulations, all but one model exhibit a weak downward trend [ranging from −0.1 to −1.8 Sverdrup (Sv) century−1; 1 Sv ≡ 106 m3 s−1] over the twentieth century. Additionally, the multimodel ensemble–mean AMOC exhibits multidecadal variability with a ~60-yr periodicity and a peak-to-peak amplitude of ~1 Sv; all individual models project consistently onto this multidecadal mode. This multidecadal variability is significantly correlated with similar variations in the net surface shortwave radiative flux in the North Atlantic and with surface freshwater flux variations in the subpolar latitudes. Potential drivers for the twentieth-century multimodel AMOC variability, including external climate forcing and the North Atlantic Oscillation (NAO), and the implication of these results on the North Atlantic SST variability are discussed.
We explore the representation of the Atlantic Meridional Overturning Circulation (AMOC) in 27 models from the CMIP6 multimodel ensemble. Comparison with RAPID and SAMBA observations suggests that the ensemble mean represents the AMOC strength and vertical profile reasonably well. Linear trends over the entire historical period (1850-2014) are generally neutral, but many models exhibit an AMOC peak around the 1980s. Ensemble mean AMOC decline in future (SSP) scenarios is stronger in CMIP6 than CMIP5 models. In fact, AMOC decline in CMIP6 is surprisingly insensitive to the scenario at least up to 2060. We find an emergent relationship among a majority of models between AMOC strength and 21st century AMOC decline. Constraining this relationship with RAPID observations suggests that the AMOC might decline between 6 and 8 Sv (34-45%) by 2100. A smaller group of models projects much less AMOC weakening of only up to 30%. Plain Language Summary The Atlantic Meridional Overturning Circulation (AMOC) is a circulation pattern in the Atlantic Ocean that is an important component of the climate system, due to its ability to redistribute and sequester heat and carbon. An accurate representation of the AMOC is a critical test for climate models and essential for building confidence in their projections. Here we investigate the AMOC in 27 climate models that contributed simulations to the Coupled Model Intercomparison Project Phase 6 (CMIP6). We find that many models reproduce the observed AMOC quite well, but there are still several models in which the AMOC is too weak or too strong. Most models suggest a slight upward trend in the AMOC from 1850 to the 1980s. Simulations representing different scenarios for future socioeconomic development suggest a stronger AMOC decline compared to previous assessments. Using direct measurements of the AMOC since 2004 and an emerging across-model relationship between AMOC decline in the 21st century and their present-day mean state, we find that the majority of CMIP6 models point to an end of century AMOC weakening of 34-45% of its present-day strength. A smaller group of models projects much less weakening of only up to 30% of its present state.
The notion that the Atlantic Meridional Overturning Circulation (AMOC) can have more than one stable equilibrium emerged in the 1980s as a powerful hypothesis to explain rapid climate variability during the Pleistocene. Ever since, the idea that a temporary perturbation of the AMOC—or a permanent change in its forcing—could trigger an irreversible collapse has remained a reason for concern. Here we review literature on the equilibrium stability of the AMOC and present a synthesis that puts our understanding of past and future AMOC behavior in a unifying framework. This framework is based on concepts from Dynamical Systems Theory, which has proven to be an important tool in interpreting a wide range of model behavior. We conclude that it cannot be ruled out that the AMOC in our current climate is in, or close to, a regime of multiple equilibria. But there is considerable uncertainty in the location of stability thresholds with respect to our current climate state, so we have no credible indications of where our present‐day AMOC is located with respect to thresholds. We conclude by identifying gaps in our knowledge and proposing possible ways forward to address these gaps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.