Despite the high prevalence and socioeconomic impact of chronic low back pain (cLBP), treatments for cLBP are often unsatisfactory, and effectiveness varies widely across patients. Recent neuroimaging studies have demonstrated abnormal resting-state functional connectivity (rsFC) of the default mode, salience, central executive, and sensorimotor networks in chronic pain patients, but their role as predictors of treatment responsiveness has not yet been explored. In this study, we used machine learning approaches to test if pre-treatment rsFC can predict responses to both real and sham acupuncture treatments in cLBP patients. Fifty cLBP patients participated in 4 weeks of either real ( N = 24, age = 39.0 ± 12.6, 16 females) or sham acupuncture ( N = 26, age = 40.0 ± 13.7, 15 females) treatment in a single-blinded trial, and a resting-state fMRI scan prior to treatment was used in data analysis. Both real and sham acupuncture can produce significant pain reduction, with those receiving real treatment experiencing greater pain relief than those receiving sham treatment. We found that pre-treatment rsFC could predict symptom changes with up to 34% and 29% variances for real and sham treatment, respectively, and the rsFC characteristics that were significantly predictive for real and sham treatment differed. These results suggest a potential way to predict treatment responses and may facilitate the development of treatment plans that optimize time, cost, and available resources.
Accumulating evidence has shown that complicated brain systems are involved in the development and maintenance of chronic low back pain (cLBP), but its underlying mechanisms, particularly the association between brain functional changes and clinical outcomes, remain unclear. Here we used resting-state fMRI and multivariate pattern analysis (MVPA) to identify abnormal functional connectivity (FC) between the default mode, sensorimotor, salience and central executive brain networks in cLBP and tested whether abnormal FCs are related to pain and comorbid symptoms. Fifty cLBP patients and 44 matched healthy controls (HCs) underwent an fMRI scan, from which brain networks were identified by independent component analysis. MVPA, graph theory approaches, and correlation analyses were applied to find abnormal FCs that were associated with clinical symptoms. Findings were validated on a second cohort of 30 cLBP patients and 30 matched HCs. Results showed the medial prefrontal cortex (mPFC) had abnormal FCs with brain regions within the DMN and with other brain networks in cLBP patients. These altered FCs were also correlated with pain duration, pain severity, and pain interference. Lastly, we found restingstate FC could discriminate cLBP patients from HCs with 91% accuracy in the first cohort and 78% accuracy in the validation cohort. Our findings suggest the mPFC may be an important hub for linking the default mode network with the other three networks in cLBP patients. Elucidating the altered FCs and their association with clinical outcomes will enhance our understanding of the pathophysiology of cLBP and may facilitate the development of pain management approaches.
Chronic low back pain (cLBP) is associated with widespread functional and structural changes in the brain. This study aims to investigate the resting state functional connectivity (rsFC) changes of visual networks in cLBP patients and the feasibility of distinguishing cLBP patients from healthy controls using machine learning methods. cLBP ( n = 90) and control individuals ( n = 74) were enrolled and underwent resting-state BOLD fMRI scans. Primary, dorsal, and ventral visual networks derived from independent component analysis were used as regions of interest to compare resting state functional connectivity changes between the cLBP patients and healthy controls. We then applied a support vector machine classifier to distinguish the cLBP patients and control individuals. These results were further verified in a new cohort of subjects. We found that the functional connectivity between the primary visual network and the somatosensory/motor areas were significantly enhanced in cLBP patients. The rsFC between the primary visual network and S1 was negatively associated with duration of cLBP. In addition, we found that the rsFC of the visual network could achieve a classification accuracy of 79.3% in distinguishing cLBP patients from HCs, and these results were further validated in an independent cohort of subjects (accuracy = 66.7%). Our results demonstrate significant changes in the rsFC of the visual networks in cLBP patients. We speculate these alterations may represent an adaptation/self-adjustment mechanism and cross-model interaction between the visual, somatosensory, motor, attention, and salient networks in response to cLBP. Elucidating the role of the visual networks in cLBP may shed light on the pathophysiology and development of the disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.