A circular ferrofluidic micropump for biomedical applications is proposed comprising two ferrofluidic plugs contained within a PMMA (Polymethyl-Methacrylate) microchannel and driven by a rotating stepping motor. Orthogonal and tangent-type micropumps are developed. The circular ferrofluidic micropump chip is patterned using a commercially-available CO 2 laser scriber. The operation of the micropump relies on the use of magnetically-actuated ferrofluidic plugs. The ferrofluid contacts the pumped fluid but is immiscible with it. The flow rate in the two types of proposed devices can be easily controlled by adjusting the rotational velocity of the stepping motor. Results show that a maximum flow rate of 128 μl/min is obtained using the tangent-type micropump with a channel width of 1000 μm and a rotational velocity of 10 rpm with zero pressure head.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.