The exchange of carbon dioxide between the ocean and the atmosphere tends to bring waters within the mixed layer toward equilibrium by reducing the partial pressure gradient across the air‐water interface. However, the equilibration process is not instantaneous; in general, there is a lag between forcing and response. The timescale of air‐sea equilibration depends on several factors involving the depth of the mixed layer, wind speed, and carbonate chemistry. We use a suite of observational data sets to generate climatological and seasonal composite maps of the air‐sea equilibration timescale. The relaxation timescale exhibits considerable spatial and seasonal variations that are largely set by changes in mixed layer depth and wind speed. The net effect is dominated by the mixed layer depth; the gas exchange velocity and carbonate chemistry parameters only provide partial compensation. Broadly speaking, the adjustment timescale tends to increase with latitude. We compare the observationally derived air‐sea gas exchange timescale with a model‐derived surface residence time and a data‐derived horizontal transport timescale, which allows us to define two nondimensional metrics of equilibration efficiency. These parameters highlight the tropics, subtropics, and northern North Atlantic as regions of inefficient air‐sea equilibration where carbon anomalies are relatively likely to persist. The efficiency parameters presented here can serve as simple tools for understanding the large‐scale persistence of air‐sea disequilibrium of CO2 in both observations and models.
The molecular interaction between caveolin-1 and ABCA1 is associated with the HDL-mediated cholesterol efflux pathway in aortic endothelial cells.
Sea surface temperature (SST) patterns both local to and remote from tropical cyclone (TC) development regions are important drivers of the variability of TC activity. Therefore, reliable simulations and predictions of TC activity depend on a realistic representation of tropical SST. Nevertheless, severe SST biases are common to the current generation of global climate models, especially in the tropical Pacific and Atlantic. These biases are strongly positive in the southeastern tropical basins, and negative, but weaker, in the northwestern tropical basins. To investigate the impact of the tropical SST biases on simulated TC activity, an atmosphericonly tropical channel model was used to conduct several sets of ensemble simulations. The simulations suggest an underrepresentation in Atlantic TC activity caused by the Atlantic cold bias alone, and an overrepresentation in Eastern North Pacific (ENP) TC activity due to the Atlantic cold bias and Pacific warm bias jointly. While the local impact of SST biases on TC activity is generally induced by the local anomalous SST and the associated changes in atmospheric conditions, the remote impact of the Atlantic bias on the ENP TCs is strongly driven by the change in topographically forced regional circulation. Moreover, an eastward shift in Western North Pacific TCs was generated by the Pacific SST biases, even though basin-wide TC activity indicators change insignificantly. The results indicate the importance of considering SST bias effects on simulated TC activity in climate model studies and highlight key regions where reducing SST biases could potentially improve TC representation in climate models.
Warm sea surface temperature (SST) anomalies have been observed in the subtropical North Pacific around Hawaii in the recent decade, appearing from 2013. We examined the formation mechanisms of the warm SST anomalies in terms of relative contribution of atmospheric surface forcing and oceanic dynamics, using the latest reanalysis products from ECMWF (ERA5 for atmosphere and ORAS5 for ocean). Results of the mixed layer temperature budget diagnosis in the target area (10–20°N and 180°–160°W) indicates that contributions from anomalous latent heat fluxes to the subtropical SST anomalies are dominant. Oceanic advective contributions play a secondary role, dampen the SST anomalies, and are negatively correlated (r = −0.38) with the latent heat fluxes. For example, the +1.0 K SST increased from 2011 to 2015 results from +1.5 K contributions from sum of surface heat flux and −0.5 K from meridional oceanic advection. The anti‐correlation between atmospheric forcing and oceanic meridional advection reflects co‐variations of wind‐driven latent heat flux and meridional Ekman advection due to the weakening of the zonal component of the surface winds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.