A Lake Michigan Ecosystem Model (LMEco) that includes a detailed description of trophic levels and their interactions was developed for Lake Michigan. The LM-Eco model constitutes a first step toward a comprehensive Lake Michigan ecosystem productivity model to investigate ecosystem-level responses and effects within the lower food web of the lake. The effect of the invasive species Bythotrephes longimanus on individual zooplankton species was investigated based upon extensive field data collected at multiple locations in Lake Michigan during the 1994-1995 Lake Michigan Mass Balance Study. Field data collected at 15 sampling stations within Lake Michigan over a series of 8 sampling cruises throughout a 2 year period demonstrated that over 65% of zooplankton species exhibited a decline with the occurrence of Bythotrephes in the sample.The LM-Eco model was successfully applied to simulate the trends of Bythotrephes and zooplankton abundance as observed in the collected field data. Model simulations allowed for examination of interactions between the invader Bythotrephes and native zooplankton groups on a 5 km by 5 km resolution throughout Lake Michigan. Analysis was completed as a time series specific to individual field sampling locations within the lake, and also on a lake-wide scale.
Lake Michigan, the sixth largest freshwater lake in the world by surface area, was utilized as a water body for assessment. Field data collected at sampling sites throughout the lake in an intensive monitoring effort were utilized for evaluation of the distribution of sediment measurements. An assessment of sediment nutrient and carbon measurements within Lake Michigan was completed to recognize strata resulting from the hydrodynamics of the system. Nonparametric comparison tests revealed that significant differences exist between measurements of sediment nutrients and organic carbon in the lake using strata based upon water column depth (all results demonstrated a p < 0.05, α = 0.05
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.