The envelope of the human immunodeficiency virus type 1 (HIV-1) plays a central role in the process of virus entry into the host cell and in the cytopathicity of the virus for lymphocytes bearing the CD4 molecule. Mutations that affect the ability of the envelope glycoprotein to form syncytia in CD4+ cells can be divided into five groups: those that decrease the binding of the envelope protein to the CD4 molecule, those that prevent a post-binding fusion reaction, those that disrupt the anchorage of the envelope glycoprotein in the membrane, those that affect the association of the two subunits of the envelope glycoprotein, and those that affect post-translational proteolytic processing of the envelope precursor protein. These findings provide a functional model of the HIV envelope glycoprotein.
The human immunodeficiency virus type 1 (HIV-1) encodes a protein, called Vpr, that prevents proliferation of infected cells by arresting them in G2 of the cell cycle. This Vpr-mediated cell-cycle arrest is also conserved among highly divergent simian immunodeficiency viruses, suggesting an important role in the virus life cycle. However, it has been unclear how this could be a selective advantage for the virus. Here we provide evidence that expression of the viral genome is optimal in the G2 phase of the cell cycle, and that Vpr increases virus production by delaying cells at the point of the cell cycle where the long terminal repeat (LTR) is most active. Although Vpr is selected against when virus is adapted to tissue culture, we show that selection for Vpr function in vivo occurs in both humans and chimpanzees infected with HIV-1. These results suggest a novel mechanism for maximizing virus production in the face of rapid killing of infected target cells.
Acquired immune deficiency syndrome (AIDS) is characterized by marked depletion of the T4+ helper subset of T cells. The aetiological agent of the disease, the human T-lymphotropic virus type III (HTLV-III)/lymphadenopathy-associated virus (LAV), specifically kills T4+ cells in vitro. Part of this specificity for the T4+ population residues in the relative efficiency with which HTLV-III infects these cells, as a result of a specific interaction between the T4 molecule and the virus envelope glycoprotein. In addition, the cytotoxic consequences of HTLV-III replication are dependent on cell type, as certain lymphoid and myeloid cells can be productively infected without notable cytopathic effect. Here we investigate the basis for the specific cytotoxicity of the virus, and report that high-level expression of the HTLV-III envelope gene induces syncytia and concomitant cell death in T4+ cell lines but not in a B-lymphocyte line. Syncytium formation depends on the interaction of envelope-expressing cells with neighbouring cells bearing surface T4 molecules. These results explain, at least in part, the specific cytopathic effect of HTLV-III infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.