Abstract. This study investigated the statistics of eddy splitting and merging in the global oceans based on 23 years of altimetry data. Multicore structures were identified using an improved geometric closed-contour algorithm of sea surface height. Splitting and merging events were discerned from continuous time series maps of sea level anomalies. Multicore structures represent an intermediate stage in the process of eddy evolution, similar to the generation of multiple nuclei in a cell as a preparatory phase for cell division. Generally, splitting or merging events can substantially change (by a factor of 2 or more) the eddy scale, amplitude, and eddy kinetic energy. Specifically, merging (splitting) generally causes an increase (decrease) of eddy properties. Multicore eddies were found to tend to split into two eddies with different intensities. Similarly, eddy merging is not an interaction of two equal-intensity eddies, and it tends to manifest as a strong eddy merging with a weaker one. A hybrid tracking strategy based on the eddy overlap ratio, considering both multicore and single-core eddies, was used to confirm splitting and merging events globally. The census revealed that eddy splitting and merging do not always occur most frequently in eddy-rich regions; e.g., their frequencies of occurrence in the Antarctic Circumpolar Current and western boundary currents were found to be greater than in midlatitude regions (20–35∘) to the north and south. Eddy splitting and merging are caused primarily by an unstable configuration of multicore structures due to obvious current– or eddy–topography interaction, strong current variation, and eddy–mean flow interaction.
This study validated wind speed (WS) and significant wave height (SWH) retrievals from the Sentinel-3A/3B and Jason-3 altimeters for the period of data beginning 31 October 2019 (to 18 September 2019 for Jason-3) using moored buoy data and satellite Meteorological Operational Satellite Program (MetOp-A/B) Advanced Scatterometer (ASCAT) data. The spatial and temporal scales of the collocated data were 25 km and 30 min, respectively. The statistical metrics of root mean square error (RMSE), bias, correlation coefficient (R), and scatter index (SI) were used to validate the WS and SWH accuracy. Validation of WS against moored buoy data indicated errors of 1.19 m/s, 1.13 m/s and 1.29 m/s for Sentinel-3A, Sentinel-3B and Jason-3, respectively. The accuracy of Sentinel-3A/3B WS is better than that of Jason-3. All three altimeters underestimated WS slightly in comparison with the buoy data. Errors in WS at different speeds or SWHs increased slightly as WS or SWH increased. Over time, the accuracy of the Jason-3 altimeter-derived WS improved, whereas that of Sentinel-3A showed no temporal dependence. The WSs of the three altimeters were compared with ASCAT wind data for validation purposes over the global ocean without in situ measurements. On average, the WSs of the three altimeters were lower in comparison with the ASCAT data. The accuracy of the three altimeters was found to be consistent and stable at low/medium speeds but it decreased when the WS exceeded 15 m/s. Validations of SWH against buoy wave data indicated that the accuracy of Jason-3 SWH was better than that of Sentinel-3A/3B. However, the accuracy of all three altimeters decreased when the SWH exceeded 4 m. The accuracy of Sentinel-3A and Jason-3 SWH was temporally stable, whereas that of Sentinel-3B SWH improved over time. Analyses of SWH accuracy as a function of wave period showed that the Jason-3 altimeter was better than the Sentinel-3A/3B altimeters for long-period ocean waves. Generally, the accuracy of WS and SWH data derived by the Sentinel-3A/3B and Jason-3 altimeters satisfies their mission requirements. Overall, the accuracy of WS (SWH) derived by Sentinel-3A/3B (Jason-3) is better than that retrieved by Jason-3 (Sentinel-3A/3B).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.