BackgroundTranslocation of high-mobility group box 1 (HMGB1) from nucleus could trigger inflammation. Extracellular HMGB1 up-regulates inflammatory response in sepsis as a late mediator. However, little was known about its role in subarachnoid hemorrhage-inducible inflammation, especially in the early stage. This study aims to identify whether HMGB1 translocation occurred early after SAH and also to clarify the potential role of HMGB1 in brain injury following SAH.MethodsSprague-Dawley (SD) rats were randomly divided into sham group and SAH groups at 2 h, 12 h and on day 1, day 2. SAH groups suffered experimental subarachnoid hemorrhage by injection of 0.3 ml autoblood into the pre-chiasmatic cistern. Rats injected by recombinant HMGB1(rHMGB1) solution were divided into four groups according to different time points. Cultured neurons were assigned into control group and four hemoglobin (Hb) incubated groups. Mixed glial cells were cultured and stimulated in medium from neurons incubated by Hb. HMGB1 expression is measured by western blot analysis, real-time polymerase chain reaction (PCR), immunohistochemistry and immunofluorescence. Downstream nuclear factor kappa B (NF-κB) subunit P65 and inflammatory factor Interleukin 1β (IL-1β) were measured by western blot and real-time PCR, respectively. Brain injury was evaluated by cleaved caspase-3 staining.ResultsOur results demonstrated HMGB1 translocation occurred as early as 2 h after experimental SAH with mRNA and protein level increased. Immunohistochemistry and immunofluorescence results indicated cytosolic HMGB1 was mainly located in neurons while translocated HMGB1 could also be found in some microglia. After subarachnoid injection of rHMGB1, NF-κB, downstream inflammatory response and cleaved caspase-3 were up-regulated in the cortex compared to the saline control group. In-vitro, after Hb incubation, HMGB1 was also rapidly released from neurons to medium. Incubation with medium from neurons up-regulated IL-1β in mixed glial cells. This effect could be inhibited by HMGB1 specific inhibitor glycyrrhizic acid (GA) treatment.ConclusionHMGB1 was released from neurons early after SAH onset and might trigger inflammation as an upstream inflammatory mediator. Extracellular HMGB1 contributed to the brain injury after SAH. These results might have important implications during the administration of specific HMGB1 antagonists early in order to prevent or reduce inflammatory response following SAH.
Despite dramatic advances in cancer therapy, the overall prognosis of glioblastoma (GBM) remains dismal. Nuclear factor kappa-B (NF-κB) has been previously demonstrated to be constitutively activated in glioblastoma, and it was suggested as a potential therapeutic target. Glycyrrhizic acid (GA) has been proved to have cytotoxic effects in many cancer cell lines. However, its role in glioblastoma has not yet been addressed. Therefore, this study aimed to investigate the effects of GA on human glioblastoma U251 cell line. The effects of GA on proliferation of U251 cells were measured by CCK-8 assay and plate colony-forming test. Cellular apoptosis was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. The expression of nuclear p65 protein, the active subunit of NF-κB, was determined by Western blot and immunofluorescence. Our results demonstrated that the survival rate and colony formation of U251 cells significantly decreased in a time- and dose-dependent manner after GA addition, and the apoptotic ratio of GA-treated groups was significantly higher than that of control groups. Furthermore, the expression of NF-κB-p65 in the nucleus was remarkably reduced after GA treatment. In conclusion, our findings suggest that GA treatment can confer inhibitory effects on human glioblastoma U251 cell line including inhibiting proliferation and inducing apoptosis, which is possibly related to the NF-κB mediated pathway.
Neuroglobin (Ngb) is a member of the globin superfamily expressed mainly in the nervous system and retina of vertebrates. Accumulated evidence has clearly demonstrated that Ngb has a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. It was suggested that oxidant stress could play an important role in neuronal injury after subarachnoid hemorrhage (SAH). The present study aims to examine the expression of Ngb in the temporal cortex and its cellular localization after SAH. We used a prechiasmatic cistern model of SAH. Ngb expression was examined at 3, 6, 12, 24, 48, and 72 h after SAH by western blot analysis and real-time polymerase chain reaction (PCR). Immunohistochemistry and immunofluorescence were performed to detect the localization of Ngb. Real-time PCR demonstrated that Ngb mRNA levels increased from 3 h after SAH, peaked at 6 h. Western blot showed Ngb protein levels were significantly increased in SAH groups in the temporal cortex and reached the peak at 24 h after SAH. The immunohistochemical staining demonstrated that Ngb was weakly expressed in the cortex in the control group while the enhanced expression of Ngb could be detected in the SAH groups. In addition, immunofluorescence results revealed that the over-expressed Ngb was located in the neuronal and microglia cell cytoplasm. These findings indicated that Ngb might play an important neuro-protective effect after SAH.
Biphasic activation of NF-κB could be induced after experimental TBI in rats. NF-κB p65 and c-Rel subunits were elevated at different post-TBI time periods, leading to a hypothesis that different NF-κB subunits might be involved in different pathophysiological processes after TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.