Previous studies have shown that human serum containing anti-group A streptococcus carbohydrate (GAS CHO) antibodies were opsonic for different M protein-carrying serotypes. To investigate the role that anti-GAS CHO antibodies play in passive and active protection, mice were immunized subcutaneously or intranasally with GAS CHO conjugated to tetanus toxoid, and mortality and oral colonization were monitored after challenge with live GAS. Compared with control mice, immunized mice were significantly protected against systemic or nasal challenge with GAS. Furthermore, studies of serum samples and throat cultures from Mexican children revealed an inverse relationship between high serum titers of anti-GAS CHO antibodies and the presence of GAS in the throat. Anti-GAS CHO antibodies were also tested for cross-reactivity with human tissues and cytoskeletal proteins. No cross-reactivity was observed in either assay. The present study demonstrates that GAS CHO is both immunogenic and protective against GAS infections.Previous work from our laboratory has shown that serum samples from healthy children contain antibodies to group A streptococcus carbohydrate (GAS CHO) and that the titers of these antibodies increase with increasing age. These antibodies were also shown to be opsonic for several M protein-carrying (M+) serotypes of GAS in an in vitro phagocytic assay. In addition, the specificity of these antibodies for GAS CHO was clearly demonstrated, because removal of them by absorption with N-acetyl glucosamine coupled to Sepharose beads
Replacing the anomeric C atom of 2‐deoxy‐O‐glucose with an N atom and the ring O atom with a C atom leads to 1, the most potent β‐glycosidase inhibitor known to date. This synthetic monosaccharide derivative also inhibits other glucosidases better than naturally occurring sugar derivatives in which only the O atom in the ring is exchanged for an N atom.
We report on the use of optical Faraday rotation to monitor the nuclear-spin signal in a set of model (19)F- and (1)H-rich fluids. Our approach integrates optical detection with high-field, pulsed NMR so as to record the time-resolved evolution of nuclear-spins after rf excitation. Comparison of chemical-shift-resolved resonances allows us to set order-of-magnitude constrains on the relative amplitudes of hyperfine coupling constants for different bonding geometries. When evaluated against coil induction, the present detection modality suffers from poorer sensitivity, but improvement could be attained via multipass schemes. Because illumination is off-resonant i.e., the medium is optically transparent, this methodology could find extensions in a broad class of fluids and soft condensed matter systems.
A pseudo-aza-monosaccharide and several pseudo-aza-disaccharide compounds were constructed based on replacement of the anomeric carbon with a nitrogen and the ring oxygen with a carbon. The inhibition constants of these compounds toward five different glycosidases, alpha-glucosidase, beta-glucosidase, isomaltase, alpha-mannosidase, and glucoamylase, were obtained. Isofagomine, the pseudo-aza-monosaccharide, shows a broad spectrum of strong inhibition against glycosidases. It is the most potent inhibitor of beta-glucosidase from sweet almonds reported to date and also a strong inhibitor of glucoamylase, isomaltase, and alpha-glucosidase. Isofagomine inhibits beta-glucosidase, glucoamylase, and isomaltase more strongly than 1-deoxynojirimycin where the ring oxygen has been replaced with a nitrogen. The alpha-1,6- linked pseudo-disaccharide showed very strong inhibition toward glucoamylase, being nearly as potent an inhibitor as acarbose. Pseudo-disaccharides in which the anomeric nitrogen was methylated to favor formation of either the alpha or beta substrate linkage generally had weakened inhibition for the glycosidases studied most likely due to steric interference with the various active sites. These results indicate that the presence of a basic group at the anomeric center is important for carbohydrase inhibition. The presence of a charged carboxylate group near the anomeric carbon which interacts with the basic nitrogen is suggested for these enzymes, particularly for beta-glucosidase. The presence of a second alpha-linked glucosyl residue is also critical for strong inhibition of glucoamylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.