Ultraflexible transparent film heaters have been fabricated by embedding conductive silver (Ag) nanowires into a thin poly(vinyl alcohol) film (AgNW/PVA). A cold-pressing method was used to rationally adjust the sheet resistance of the composite films and thus the heating powers of the AgNW/PVA film heaters at certain biases. The film heaters have a favorable optical transmittance (93.1% at 26 Ω/sq) and an outstanding mechanical flexibility (no visible change in sheet resistance after 10 000 bending cycles and at a radius of curvature ≤1 mm). The film heaters have an environmental endurance, and there is no significant performance degradation after being kept at high temperature (80 °C) and high humidity (45 °C, 80% humidity) for half a year. The efficient Joule heating can increase the temperature of the film heaters (20 Ω/sq) to 74 °C in ∼20 s at a bias of 5 V. The fast-heating characteristics at low voltages (a few volts) associated with its transparent and flexibility properties make the poly(dimethylsiloxane)/AgNW/PVA composite film a potential candidate in medical thermotherapy pads.
Abstract2D transition metal dichalcogenides have shown great potential for next‐generation microelectronic devices owing to their ability to prolong the life of Moore's law by mitigating the short‐channel effect. Recently, many efforts have been made on doping 2D films to create p‐n junctions, in which plasma implantation has been placed great expectations due to its CMOS process compatibility. However, ultrathin vertical 2D p‐n homostructure with excellent rectification behaviors have rarely been studied so far. Herein, MoS2 van der Waals p‐n homojunctions are fabricated by highly efficient N2 plasma implantation. Kelvin probe force microscope reveals the surface potential difference of ≈130 mV between n‐MoS2 and p‐MoS2. The fabricated field‐effect transistor (FET) presents a high rectification ratio up to 3.1 × 10–3 at the gate bias VGS = 20 V, which is over 20 times larger than that of the vertical homojunction obtained by surface chemical doping. The forward current is mainly dominated by both the interlayer recombination and band‐to‐band tunneling, while the ultra‐low reverse current in the order of 10 pA is governed by direct tunneling. The results demonstrate a new CMOS‐compatible way to fabricate vertical 2D homojunction, which is the basic structure of many low‐dimensional microelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.